Type-Sate Dynamic Placement
with First-Class Placed Values

George Zakhour Pascal Weisenburger Guido Salvaneschi

-1

- W

- E] Programming
‘: University of St.Gallen p' Group

Dynamic Placement

Dynamic Placement
e Caching

* Geo-Replication

Hybrid Cloud

* High-Performance
Computing

Safe Placement

Safe Placement and Static Check

Type-Safe Distributed Programming with ML5*

Tom Murphy VII, Karl Crary, and Robert Harper

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA
{tom7,crary,rwh}@cs.cmu.edu

A Formal Theory of Choreographic Programming

Luis Cruz-Filipe' . Fabrizio Montesi'

Received: 7 September 2022 / Accepted: 9 April 2023 / Published online: 27 May 2023

@ The Author(s) 2023

Abstract

Choreographic programming is a paradigm for writing coordination plans for distributed
systems from a global point of view, from which correct-by-construction decentralised imple-
mentations can be generated automatically. Theory of choreographies typically includes a
number of complex results that are proved by structural induction. The high number of cases
and the subtle details in some of these proofs has led to important errors being found in
published works. In this work, we formalise the theory of a choreographic programming

language in Cog. Our development includi
its Turing completeness, a compilation pr¢
characterisation of the correctness of this p
the benefits of using a theorem prover: we
the mechanised proof, and a significant si
offer a foundation for the future formal de

- Marco Peressotti'

language for spa-
of ML, allows an
soned about as a
ibility of any kind
gic, statically ex-
he ML5 compiler
lved in the com-
ifferent
iler and runtime
ing: a distributed
veb server.

resources

Abstract

Distributed System Development with ScaLALoci

PASCAL WEISENBURGER, Technische Universitat Darmstadt, Germany
MIRKO KOHLER, Technische Universitit Darmstadt, Germany
GUIDO SALVANESCHI,

Technische Universitat Darmstadt, Germany

Distributed applications are traditionally developed as separate modules, often in different languages, which
react to events, like user input, and in turn produce new events for the other modules. Separation into compo-
nents requires time-consuming integration. Manual implementation of communication forces programmers
to deal with low-level details, The combination of the two results in obscure distributed data flows scattered
among multiple modules, hindering reasoning about the system as a whole.

The Scaralocr distributed programming language addresses these issues with a coherent model based on
placement types that enables reasoning about distributed data flows, supporting multiple software architectures
via dedicated language features and abstracting over low-level communication details and data conversions.
As we show, Scaralocr simplifies developing distributed systems, reduces error-prone communication code
and favors early detection of bugs.

I

Links: Web Programming Without Tiers*

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

ArchJava:

Craig Chambers
Department of Compuler Science and Engineering

Connecting Software Architecture to Implementation
Jonathan Aldrich

David Notkin

University of Washington
Box 352350
Sealtle, WA 98195-2350 USA
+1 206 616-1846

Software architecture describes the structure of a system, enabling
more effective design, program understanding, and formal

ple implementation
istencies, cavsing
s, and inhibiting
sion to Java that

{jonal, chambers, notkin} @ cs.washington.edu

University of Edinburgh

ni
)¢

vh
cé
p
uc¢
tri
o

language. Thus, it may be difficull to trace architectural features
1

1

to the i tion, and the i

jon may become)

inconsistent with the architecture as the program cvolves. In
summary, while architectural analysis in existing ADLs may
teveal important architectural propertics, these properties are not

guaranieed ta hold in the implementation,

In order to enable architectural reasoning

ey ENCR . R R

h impl ion,
5 10 archileunrul
to a circuit-design
press architecrural
and that it can aid
.

Ur/Web: A Simple Model for Programming the Web

about an

Adam Chlipala

MIT CSAIL
adamc@csail mit.edu

Abstract

The World Wide Web has evolved gradually from a document de-
livery platform to an architecture for distributed programming, This
largely unplanned evolution is apparent in the set of interconnected
languages and protocols that any Web application must manage
This paper presents Ur/Web, a domain-sp . statically typed
functional programming language with a much simpler model for
programming modern Web applications. Ur/Web's model is uni-
fied, where programs in a single programming language are com-
piled 1o other “Web standards™ languages as needed; supports novel
kinds of encapsulation of Web-specific state; and exposes simple
concurreney, where programmers can reason about distributed,
multithreaded applications via a mix of transactions and cooper-
ative preemption. We give a witorial introduction to the main fea-
tures of Ur/Web und discuss the language implementation and the
production Web applications that use it

for network communication, and on a 1
sistent, structured data on servers, Code fragments.
nt languages are often embedded within each other
vs, and the pnpul.ar Weh development tools provide

for storing

Fabric: A Platform for Secure Distributed
Computation and Storage

Jed Liu
Xin Qi

Michael D. George
Lucas Waye

K. Vikram
Andrew C. Myers

{liujed, mdgeorge, kvikram,gixin.Irw,andru)@cs.cornell.edu
Department of Computer Science
Cornell University
4130 Upson Hall, ithaca NY

Abstract

Fabyic is a new system and language for building sccure distributed
information systems. It s a decentralized system that allows hetero-
odes 1o securely share both information and com
putation resources despite mutual distrust. 1is high-level program-
inguage makes distribution and persistence V transpar-
ent 1o programmers. Fabric supports data- \hlpplm. and function-
shipping siyles of both 4

can move between nodes to meet security Tequil oy
prove ,mmm.m Fabric provides rich Jav

Leneous netw,

lean, con-
1 enforces

Eubctlonatty of lss Ssisms
and privacy requirements. Thi
ric, a platform for building secure distributed informs

Itis particularly difficult to build secure federated sy
integrate and from independs
trative domains—each domain has policies for security und privacy.
but does not fully trust other domains 1o enforce them, Integrating
information from different domains is important because it enables
new services and capabilities,

To illustrate the challenges. consider the scenario of two medical
vant to securely and quickly share patient infor-
s importunt: according to 4 1999 Institute of
Medicine study, at least 44,000 deaths y result from medical
errors, with incomplete patient infi dentified as a leading
cause [25]. However, automated sharing of patient data poses diffi-
culties. First, the security and privacy policies of the two institutions
must be satisfied (as mandated by HIPAA 1221 in the U8, restrict-
ing which information can be shared or modified by the two institu-

adminis-

unguage or API like SQL

These complaints are not new, nor are language-based solutions,

The Links proj
approach,
within one s|

ct {7,

11] pioneered the *
g all the pieces of dynam

less programming”
c Web applications

ally typed functional language. More recent de-

signs in the mainstream Teap some similar benefits, as in Google's
Weh 'Ennlh" and lenre" systems, for adding compilation on top

of Web-standard language:
safie querying (to SQL databa

Such established systems provide substantial

id Microsoft’s LI\Q 271, for type-
nd more) within general-purpose

s 1o Web

pmgrammeu but lhm‘ is mme uc crsuhl ask for. This p.l;k,r m—

ate of il

Safe Placement and Static Checking

Type-Safe Distributed Programming with ML5*

Links: Web Programming Without Tiers*

arnegie M Univers Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop
University of Edinburgh

A Formal Theory of Choreographic Programming
ArchJava:

Luis Cruz-Filipe' . Fabrizio Montesi' . Marco Peressotti' of] alloy n

Fabric: A Platform for Secure Distributed
Computation and Storage

ber 2022 / Accepte il 2023 / Publish nline: 27

Jed Liu Michael D. George K. Vikram
Xin Qi Lucas Waye Andrew C. Myers
Abstract

“roof e Placement is an explicit static property

systems from a global point of view, from which correct-by-co

j@cs.cornell.edu

mentations can be generated automatically. Theory of chorel
number of complex results that are proved by structural induc
and the subtle details in some of these proofs has led to i s

G i, i s, 8 M i ey e None addresses ynamic placement
lan in Coq. Our development includ| 5 :

g completeness, a compilation pr(D 1 Strl bu

characterisation of the correctness of this g

its T

the benefits of using a theorem prover: we

ificant si PASCAL W
offer a foundation for the future formal dg MIRKO KO _, Ppress archirecrorar

the mechanised proof, and a

Darmstadt, Germany

| GUIDO SALVANESCHI, Technische Universit: s hat it

. Adam Chlipala

—_—

Distributed applications are traditionally developed as separate modules, often in different languages, which

react to events, like user input, and in turn produce new events for the other modules aration into compo-

nents requires time-consum integration. Manual implementation of comn ammers

-level detail

Abstract
1d Wide Web has evolved gradually from

ibout the system as a whole.

ruage addresses these issues with a coherent model based on

placement types tha t W, supportin I are architect :

via dedicated languag, yver low-level communication details and data conversions. his : ¢ ally
i 1 = = : fu wch simpler me
As we show, ScaraLocr sin stributed systems, reduces error-prone communication code " Web's m

fied. where

and fa

production Web applications that use

i
Achieving Safe Dynamic Placement
with Placement Types

What are Placement Types?

What are Placement Types?

// The architecture is:
@peer type Client <: { type Tie <: Single[Server] }
@peer type Server <: { type Tie <: Multiple[Client] with Multiple[Server] }

// All clients have this String variable
var message: String on Client = "Greetings Earthlings™

// All servers can fetch the messages of their connected clients
def hashMessages(seed: Int): List[String]| on Server =
on[Client].run.capture(seed) {
hash(message, seed)
}.asLocalFromAll

A Principled Approach to Placement Safety

Re-Interpreting Type System Features
as Placements

Interpreting Types as Placements

Type System Placement System
[00PsLA 2018} 2°H
Types &= Placement Types ==
Int, Boolean, String Client, Server, Database

Param. Polymorphism &= Pl|ace-Polymorphic Modules
Map[K,\V], Set[T], Either[S,T] LeaderElection[P], DistHashMap/[P]

? = Dynamic Placement
° DB/[Cache, CPU|GPU, LocalFS[RemoteFS

Interpreting Types as Placements

Type System

Types

Int, Boolean, String

Param. Polymorphism
Map[K)\V], Set[T], Either[S,T]

Union Types

Peano Numbers, Linked Lists, Options

Placement System

[OOPSLA 2018}
Placement Types |
Client, Server, Database

[ECOOP 2019] ==
Place-Polymorphic Modules
LeaderElection[P], DistHashMap[P]

Dynamic Placement
DB|[Cache, CPU|GPU, LocalFS[RemoteFS

Union Placement Types
Statically Capture
Placement Uncertainty

\ el

) g/_Sqution: Union Placement Types
..

* First-class placed type: Data at (P | Q)
e Static uncertainty and dynamic certainty

* Eliminate runtime checks when access is safe

ol

] ,:;_;:,/_Solution: Union Placement Types
-

 Remote references inhabit placement unions

* Introduced with remote ref

def readFromCache(k: Key): (Data at Cache) on Cache =
remote ref query(k)

* Eliminated with deref — typechecks if the architecture allows it

readFromCache("splash23").deref : Future[Value]

ol

] ,E'.;_;./_Solution: Union Placement Types
-

* Introduced via subsumption T at P <: T at (P | Q)

def readFromCache(k: Key): Data at (DB | Cache) on Cache =
remote ref query(k)

* Eliminated with toEither[P, Q]

data.toEither[Cache, DB] : Either[Data at Cache, Data at DB]

oString()
tsWith()) {

Evaluation: URLs as
References

Evaluation: URLs as References

20 v public static void getBackgroundImage(ImageView imageView) {

21 String backgroundUrl = PreferenceData.BACKGROUND_IMAGE.getValue(imageView.getContext());
22

23 if (backgroundUrl != null && backgroundUrl.length() > @) {

24 if (backgroundUrl.startsWith("http"))

25 Glide.with(imageView.getContext()).load(backgroundUrl).into(imageView);

26 else if (backgroundUrl.contains("://")) {

27 if (backgroundUrl.startsWith("content://")) {

28 String path = Uri.parse(backgroundUrl).getlLastPathSegment();

29 if (path != null && path.contains(":"))

30 path = "/storage/" + path.replaceFirst(":", "/");

31 else path = Uri.parse(backgroundUrl).getPath();

32

33 // "a haiku™"

34 //I don't like storage

35 //I'm sorry, poor developer

36 //this is all my fault

37 // - james fenn, 2018

38

39 Glide.with(imageView.getContext()).load(new File(path)).into(imageView);

40 } else Glide.with(imageView.getContext()).load(Uri.parse(backgrounduUrl)).into(imageView);
41 } else Glide.with(imageView.getContext()).load(new File(backgroundUrl)).into(imageView);

bittps://girthﬁb.com/fennifith/AIarmio/bIob/main/app/src/main/java/me/jfenn/aIarmio/utils/lmageUtiIs.java

Evaluation: URLs as References

20 v public static void getBackgroundImage(ImageView imageView) {

21 String backgroundUrl = PreferenceData.BACKGROUND_IMAGE.getValue(imageView.getContext());
22 |

23 if (bacl

24 if | f " L o 1 "

. [/ d NdlKu

26 elsy ‘ = L. ' & . 20 »

- //I don't like storage

28

29 //1'm sorry, poor developer

30

3 //this is all my fault

32

33 ~ 1y - = "

) | - Jjames Tenn, 2018
35 \

36 I . R

37 // - james fenn, 2018

38

39 Glide.with(imageView.getContext()).load(new File(path)).into(imageView);

40 } else Glide.with(imageView.getContext()).load(Uri.parse(backgrounduUrl)).into(imageView);
41 } else Glide.with(imageView.getContext()).load(new File(backgroundUrl)).into(imageView);

bittps://girthﬁb.com/fennifith/AIarmio/bIob/main/app/src/main/java/me/jfenn/aIarmio/utils/lmageUtiIs.java

Evaluation: URLs as References

20 v public static void getBackgroundImage(ImageView imageView) {

21 String backgroundUrl = PreferenceData.BACKGROUND_IMAGE.getValue(imageView.getContext());
22

23 if (backgroundUrl != null && backgroundUrl.length() > @) {

24 if (backgroundUrl.startsWith("http")) _

25 Glide.with(imageView.getContext()).load(backgroundUrl).into(imageView);

26 else if (backgroundUrl.contains("://")) { _

27 if (backgroundUrl.startsWith("content://")) { _

28 String path = Uri.parse(backgroundUrl).getlLastPathSegment();

29 if (path != null && path.contains(":")) _

30 path = "/storage/" + path.replaceFirst(":", "/");

31 else path = Uri.parse(backgroundUrl).getPath();

32

33 // "a haiku™"

34 //I don't like storage

35 //I'm sorry, poor developer

36 //this is all my fault

37 // - james fenn, 2018

38

39 Glide.with(imageView.getContext()).load(new File(path)).into(imageView);

40 } else Glide.with(imageView.getContext()).load(Uri.parse(backgrounduUrl)).into(imageView);
41 } else Glide.with(imageView.getContext()).load(new File(backgroundUrl)).into(imageView);

bittps://girthﬁb.com/fennifith/AIarmio/bIob/main/app/src/main/java/me/jfenn/aIarmio/utils/lmageUtiIs.java

Evaluation: URLs as References

133 out of 3K Android apps encode -
dynamic placement as URLs.

(F-Droid) 1 if (repo.getAddress().startsWith("content://") || repo.getAddress().startswWith("file://")) {
// no need to show a QR Code, it 1s not shareable

[a]

3 return; }
(VLC) 1 public MediaWrapper getMedia(Uri uri) {
2 if ("content".equals(uri.getScheme())) return null;
(Element.io) value = uri.toString()

if (value.startswith("file://")) {
// 1t should never happen
// else android.os.FileUriExposedException will be triggered.
// see https://github.com/vector-im/riot-android/issues/1725
return }

SN R W N =

Evaluation: AntennaPod

e 5.1k %
B e 1.2k forks

* 500K+ downloads on the Play Store
& AntennaPod / AntennaPod Pubiic 2 Notifications | ¥ Fork 12k ¥y star 51k ' ~5 5 . 5 K LO C

<> Code (O Issues 202 I Pullrequests 14 ® Actions [Projects 1 0 wiki

£ develop ~ Go to file About

A podcast manager for Android

o caoilte Remove Iconify from NavListAda... .. ./ lastweek @8,573
& www.antennapod.org
AntennaPod
R AntennaPod Open Source Team
f=1
4.5% 500K+ I

44.3K reviews Downloads Parental guidance ©

Evaluation: AntennaPod

Play
@ locally

= =
' _ \ /media/
file://media/Doom.mp3 -
/ A
N\
Local | Remote

Doom.mp3

Doom.mp3

Evaluation: AntennaPod

file://media/Doom.mp3

B %,

/media/
A
A
/ Local | Remote

Doom.mp3 Doom.mp3

Evaluation: AntennaPod

Play
@ remotely

= =
' _ \ /media/
file://media/Doom.mp3 -
/ A
N\
Local | Remote

Doom.mp3

Doom.mp3

Evaluation: AntennaPod

file://media/Doom.mp3

&
A / [=
(N

=

N & a0
Local | Remote ,@,

Doom.mp3

Evaluation: AntennaPod in Dyno

Play
@ remotely

'l= -l=
' _ \ /media/
file://media/Doom.mp3 -
/ A
A
Local | Remote

Doom.mp3

Doom.mp3

Evaluation: AntennaPod in Dyno

file://media/Doom.mp3

9. TG

I

g i =

=y =
\ A

Local | Remote &

Doom.mp3

Evaluation: Performance

Time (s)

50

40

\ \ \

—&— Dyno 5K
-== RMI 5K
—O6— Dyno 2.5K
- == RMI25K

10

20

30

40 50 60
Cache Hits (%)

More goodies in the paper

Case studies

Comparative evaluation
Implementation overview
Formalization

Theorems (and proofs in Appendix B)

Type-Safe Dynamic Placement with First-Class Placed Values

GEORGE ZAKHOUR, PASCAL WEISENBURGER, and GUIDO SALVANESCHI,

University of St. Gallen, Switzerland

Several distributed programming language solutions have been proposed to reason about the placement of
data, computations, and peers interaction. Such solutions include, among the others, multitier programming,
choreographic programming and various approaches based on behavioral types. These methods statically
ensure safety properties thanks to a complete knowledge about placement of data and computation at compile
time. In distributed systems, however, dynamic placement of computation and data is crucial to enable
performance optimizations, e.g., driven by data locality or in presence of a number of other constraints such as
security and compliance regarding data storage location. Unfortunately, in existing programming languages,
dynamic placement conflicts with static reasoning about distributed programs: the flexibility required by
dynamic placement hinders statically tracking the location of data and computation.

In this paper we present Dyno, a programming language that enables static reasoning about dynamic
placement. Dyno features a type system where values are explicitly placed, but in contrast to existing
approaches, placed values are also first class, ensuring that they can be passed around and referred to from
other locations. Building on top of this mechanism, we provide a novel interpretation of dynamic placement
as unions of placement types. We formalize type soundness, placement correctness (as part of type soundness)
and architecture conformance. In case studies and benchmarks, our evaluation shows that Dyno enables
static reasoning about programs even in presence of dynamic placement, ensuring type safety and placement
correctness of programs at negligible performance cost. We reimplement an Android app with ~7K LOC
in Dyno, find a bug in the existing implementation, and show that the app’s approach is representative of a
common way to implement dynamic placement found in over 100 apps in a large open-source app store.

CCS Concepts: » Software and its engineering — Distributed programming languages; Domain specific
languages; « Theory of computation — Distributed computing models.

Conclusion

Type System Placement System

1 l l Union Types e Dynamic Placement
DB|[Cache, CPU|GPU, LocalFS|RemoteFS
I I I

Peano Numbers, Linked Lists, Options

Dynamic Placement Safe Placement

p” Data at (P | Q)
«,, .
A University of St.Gallen

D Programming
‘=l Group

	Folie 1: Type-Safe Dynamic Placement with First-Class Placed Values
	Folie 2: Dynamic Placement
	Folie 3: Dynamic Placement
	Folie 4: Safe Placement
	Folie 5: Safe Placement and Static Checking
	Folie 6: Safe Placement and Static Checking
	Folie 7: Achieving Safe Dynamic Placement with Placement Types
	Folie 8: What are Placement Types?
	Folie 9: What are Placement Types?
	Folie 10: Re-Interpreting Type System Features as Placements
	Folie 11: Interpreting Types as Placements
	Folie 12: Interpreting Types as Placements
	Folie 13: Union Placement Types Statically Capture Placement Uncertainty
	Folie 14: Solution: Union Placement Types
	Folie 15: Solution: Union Placement Types
	Folie 16: Solution: Union Placement Types
	Folie 17: Evaluation: URLs as References
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22: Evaluation: AntennaPod
	Folie 23: Evaluation: AntennaPod
	Folie 24: Evaluation: AntennaPod
	Folie 25: Evaluation: AntennaPod
	Folie 26: Evaluation: AntennaPod
	Folie 27: Evaluation: AntennaPod in Dyno
	Folie 28: Evaluation: AntennaPod in Dyno
	Folie 29: Evaluation: Performance
	Folie 30: More goodies in the paper
	Folie 31: Conclusion

