
Type-Safe Dynamic Placement

with First-Class Placed Values

George Zakhour Pascal Weisenburger Guido Salvaneschi

Dynamic Placement

Dynamic Placement

• Caching

• Geo-Replication

• Hybrid Cloud

• High-Performance
Computing

Safe Placement

Safe Placement and Static Checking

Safe Placement and Static Checking

• Placement is an explicit static property

• None addresses dynamic placement

Achieving Safe Dynamic Placement

with Placement Types

+

What are Placement Types?

What are Placement Types?

// The architecture is:
@peer type Client <: { type Tie <: Single[Server] }
@peer type Server <: { type Tie <: Multiple[Client] with Multiple[Server] }

// All clients have this String variable
var message: String on Client = "Greetings Earthlings"

// All servers can fetch the messages of their connected clients
def hashMessages(seed: Int): List[String] on Server =

on[Client].run.capture(seed) {
hash(message, seed)

}.asLocalFromAll

Re-Interpreting Type System Features

as Placements

A Principled Approach to Placement Safety

Interpreting Types as Placements

Types
Int, Boolean, String

Placement Types
Client, Server, Database

Param. Polymorphism
Map[K,V], Set[T], Either[S,T]

Place-Polymorphic Modules
LeaderElection[P], DistHashMap[P]

Dynamic Placement
DB|Cache, CPU|GPU, LocalFS|RemoteFS

[OOPSLA 2018]

[ECOOP 2019]

?

Type System Placement System

Interpreting Types as Placements

Types
Int, Boolean, String

Placement Types
Client, Server, Database

Param. Polymorphism
Map[K,V], Set[T], Either[S,T]

Place-Polymorphic Modules
LeaderElection[P], DistHashMap[P]

Union Types
Peano Numbers, Linked Lists, Options

Dynamic Placement
DB|Cache, CPU|GPU, LocalFS|RemoteFS

Type System Placement System
[OOPSLA 2018]

[ECOOP 2019]

[OOPSLA 2023]

Union Placement Types

Statically Capture
Placement Uncertainty

Solution: Union Placement Types

• First-class placed type: Data at (P | Q)

• Static uncertainty and dynamic certainty

• Eliminate runtime checks when access is safe

Solution: Union Placement Types

• Remote references inhabit placement unions

• Introduced with remote ref

def readFromCache(k: Key): (Data at Cache) on Cache =
remote ref query(k)

• Eliminated with deref – typechecks if the architecture allows it

readFromCache("splash23").deref : Future[Value]

Solution: Union Placement Types

• Introduced via subsumption T at P <: T at (P | Q)

def readFromCache(k: Key): Data at (DB | Cache) on Cache =
remote ref query(k)

• Eliminated with toEither[P, Q]

data.toEither[Cache, DB] : Either[Data at Cache, Data at DB]

oString()
tsWith("file://")) {
never happen
oid.os.FileUriExposedException

Evaluation: URLs as
References

https://github.com/fennifith/Alarmio/blob/main/app/src/main/java/me/jfenn/alarmio/utils/ImageUtils.java

Evaluation: URLs as References

https://github.com/fennifith/Alarmio/blob/main/app/src/main/java/me/jfenn/alarmio/utils/ImageUtils.java

Evaluation: URLs as References

https://github.com/fennifith/Alarmio/blob/main/app/src/main/java/me/jfenn/alarmio/utils/ImageUtils.java

Evaluation: URLs as References

133 out of ~3K Android apps encode
dynamic placement as URLs.

(F-Droid)

(VLC)

(Element.io)

Evaluation: URLs as References

Evaluation: AntennaPod

• 5.1k ★
• 1.2k forks

• 500K+ downloads on the Play Store

• ~55.5 KLoC

Evaluation: AntennaPod

file://media/Doom.mp3
/media/

Doom.mp3

Play

locally

/media/

Doom.mp3

Local Remote

Evaluation: AntennaPod

/media/

Doom.mp3

/media/

Doom.mp3

OKAY

file://media/Doom.mp3

Local Remote

Evaluation: AntennaPod

file://media/Doom.mp3
/media/

Doom.mp3

Play

remotely

/media/

Doom.mp3

Local Remote

Evaluation: AntennaPod

/media/

Doom.mp3

Local Remote

/media/

Doom.mp3

file://media/Doom.mp3

OKAY

Evaluation: AntennaPod in Dyno

file://media/Doom.mp3
/media/

Doom.mp3

Play

remotely

/media/

Doom.mp3

Local Remote

Evaluation: AntennaPod in Dyno

/media/

Doom.mp3

/media/

Doom.mp3

OKAY

Local Remote

file://media/Doom.mp3

Evaluation: Performance

More goodies in the paper

• Case studies

• Comparative evaluation

• Implementation overview

• Formalization

• Theorems (and proofs in Appendix B)

Conclusion

+

Data at (P | Q)

Dynamic Placement Safe Placement

	Folie 1: Type-Safe Dynamic Placement with First-Class Placed Values
	Folie 2: Dynamic Placement
	Folie 3: Dynamic Placement
	Folie 4: Safe Placement
	Folie 5: Safe Placement and Static Checking
	Folie 6: Safe Placement and Static Checking
	Folie 7: Achieving Safe Dynamic Placement with Placement Types
	Folie 8: What are Placement Types?
	Folie 9: What are Placement Types?
	Folie 10: Re-Interpreting Type System Features as Placements
	Folie 11: Interpreting Types as Placements
	Folie 12: Interpreting Types as Placements
	Folie 13: Union Placement Types Statically Capture Placement Uncertainty
	Folie 14: Solution: Union Placement Types
	Folie 15: Solution: Union Placement Types
	Folie 16: Solution: Union Placement Types
	Folie 17: Evaluation: URLs as References
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22: Evaluation: AntennaPod
	Folie 23: Evaluation: AntennaPod
	Folie 24: Evaluation: AntennaPod
	Folie 25: Evaluation: AntennaPod
	Folie 26: Evaluation: AntennaPod
	Folie 27: Evaluation: AntennaPod in Dyno
	Folie 28: Evaluation: AntennaPod in Dyno
	Folie 29: Evaluation: Performance
	Folie 30: More goodies in the paper
	Folie 31: Conclusion

