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Abstract

Choreographic programming is a paradigm for writing coordination plans for distributed
systems from a global point of view, from which correct-by-construction decentralised imple-
mentations can be generated automatically. Theory of choreographies typically includes a
number of complex results that are proved by structural induction. The high number of cases
and the subtle details in some of these proofs has led to important errors being found in
published works. In this work, we formalise the theory of a choreographic programming
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Distributed System Development with ScaLALoci

PASCAL WEISENBURGER, Technische Universitat Darmstadt, Germany
MIRKO KOHLER, Technische Universitit Darmstadt, Germany
GUIDO SALVANESCHI,

Technische Universitat Darmstadt, Germany

Distributed applications are traditionally developed as separate modules, often in different languages, which
react to events, like user input, and in turn produce new events for the other modules. Separation into compo-
nents requires time-consuming integration. Manual implementation of communication forces programmers
to deal with low-level details, The combination of the two results in obscure distributed data flows scattered
among multiple modules, hindering reasoning about the system as a whole.

The Scaralocr distributed programming language addresses these issues with a coherent model based on
placement types that enables reasoning about distributed data flows, supporting multiple software architectures
via dedicated language features and abstracting over low-level communication details and data conversions.
As we show, Scaralocr simplifies developing distributed systems, reduces error-prone communication code
and favors early detection of bugs.
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Abstract

The World Wide Web has evolved gradually from a document de-
livery platform to an architecture for distributed programming, This
largely unplanned evolution is apparent in the set of interconnected
languages and protocols that any Web application must manage
This paper presents Ur/Web, a domain-sp . statically typed
functional programming language with a much simpler model for
programming modern Web applications. Ur/Web's model is uni-
fied, where programs in a single programming language are com-
piled 1o other “Web standards™ languages as needed; supports novel
kinds of encapsulation of Web-specific state; and exposes simple
concurreney, where programmers can reason about distributed,
multithreaded applications via a mix of transactions and cooper-
ative preemption. We give a witorial introduction to the main fea-
tures of Ur/Web und discuss the language implementation and the
production Web applications that use it
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Abstract

Fabyic is a new system and language for building sccure distributed
information systems. It s a decentralized system that allows hetero-
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What are Placement Types?




What are Placement Types?

// The architecture is:
@peer type Client <: { type Tie <: Single[Server] }
@peer type Server <: { type Tie <: Multiple[Client] with Multiple[Server] }

// All clients have this String variable
var message: String on Client = "Greetings Earthlings™

// All servers can fetch the messages of their connected clients
def hashMessages(seed: Int): List[String]| on Server =
on[Client].run.capture(seed) {
hash(message, seed)
}.asLocalFromAll



A Principled Approach to Placement Safety

Re-Interpreting Type System Features
as Placements



Interpreting Types as Placements

Type System Placement System
[00PsLA 2018} 2°H
Types &= Placement Types ==
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Param. Polymorphism &= Pl|ace-Polymorphic Modules
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Interpreting Types as Placements

Type System

Types

Int, Boolean, String

Param. Polymorphism
Map[K)\V], Set[T], Either[S,T]

Union Types

Peano Numbers, Linked Lists, Options

Placement System

[OOPSLA 2018}
Placement Types |
Client, Server, Database

[ECOOP 2019] ==
Place-Polymorphic Modules
LeaderElection[P], DistHashMap[P]

Dynamic Placement
DB|[Cache, CPU|GPU, LocalFS[RemoteFS



Union Placement Types
Statically Capture
Placement Uncertainty
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* First-class placed type: Data at (P | Q)
e Static uncertainty and dynamic certainty

* Eliminate runtime checks when access is safe
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 Remote references inhabit placement unions

* Introduced with remote ref

def readFromCache(k: Key): (Data at Cache) on Cache =
remote ref query(k)

* Eliminated with deref — typechecks if the architecture allows it

readFromCache("splash23").deref : Future[Value]
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] ,E'.;_;./_Solution: Union Placement Types
-

* Introduced via subsumption T at P <: T at (P | Q)

def readFromCache(k: Key): Data at (DB | Cache) on Cache =
remote ref query(k)

* Eliminated with toEither[P, Q]

data.toEither[Cache, DB] : Either[Data at Cache, Data at DB]
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Evaluation: URLs as References

20 v public static void getBackgroundImage(ImageView imageView) {

21 String backgroundUrl = PreferenceData.BACKGROUND_IMAGE.getValue(imageView.getContext());
22

23 if (backgroundUrl != null && backgroundUrl.length() > @) {

24 if (backgroundUrl.startsWith("http"))

25 Glide.with(imageView.getContext()).load(backgroundUrl).into(imageView);

26 else if (backgroundUrl.contains("://")) {

27 if (backgroundUrl.startsWith("content://")) {

28 String path = Uri.parse(backgroundUrl).getlLastPathSegment();

29 if (path != null && path.contains(":"))

30 path = "/storage/" + path.replaceFirst(":", "/");

31 else path = Uri.parse(backgroundUrl).getPath();

32

33 // "a haiku™"

34 //I don't like storage

35 //I'm sorry, poor developer

36 //this is all my fault

37 // - james fenn, 2018

38

39 Glide.with(imageView.getContext()).load(new File(path)).into(imageView);

40 } else Glide.with(imageView.getContext()).load(Uri.parse(backgrounduUrl)).into(imageView);
41 } else Glide.with(imageView.getContext()).load(new File(backgroundUrl)).into(imageView);

bittps://girthﬁb.com/fennifith/AIarmio/bIob/main/app/src/main/java/me/jfenn/aIarmio/utils/lmageUtiIs.java
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37 // - james fenn, 2018

38

39 Glide.with(imageView.getContext()).load(new File(path)).into(imageView);

40 } else Glide.with(imageView.getContext()).load(Uri.parse(backgrounduUrl)).into(imageView);
41 } else Glide.with(imageView.getContext()).load(new File(backgroundUrl)).into(imageView);
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Evaluation: URLs as References

133 out of 3K Android apps encode -
dynamic placement as URLs.

(F-Droid) 1 if (repo.getAddress().startsWith("content://") || repo.getAddress().startswWith("file://")) {
// no need to show a QR Code, it 1s not shareable

[a]

3 return; }
(VLC) 1 public MediaWrapper getMedia(Uri uri) {
2 if ("content".equals(uri.getScheme())) return null;
(Element.io) value = uri.toString()

if (value.startswith("file://")) {
// 1t should never happen
// else android.os.FileUriExposedException will be triggered.
// see https://github.com/vector-im/riot-android/issues/1725
return }

SN R W N =



Evaluation: AntennaPod
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Evaluation: AntennaPod
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Evaluation: AntennaPod
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Evaluation: AntennaPod
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Evaluation: AntennaPod
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Evaluation: AntennaPod in Dyno
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Evaluation: AntennaPod in Dyno
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Evaluation: Performance
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More goodies in the paper

Case studies

Comparative evaluation
Implementation overview
Formalization

Theorems (and proofs in Appendix B)

Type-Safe Dynamic Placement with First-Class Placed Values

GEORGE ZAKHOUR, PASCAL WEISENBURGER, and GUIDO SALVANESCHI,

University of St. Gallen, Switzerland

Several distributed programming language solutions have been proposed to reason about the placement of
data, computations, and peers interaction. Such solutions include, among the others, multitier programming,
choreographic programming and various approaches based on behavioral types. These methods statically
ensure safety properties thanks to a complete knowledge about placement of data and computation at compile
time. In distributed systems, however, dynamic placement of computation and data is crucial to enable
performance optimizations, e.g., driven by data locality or in presence of a number of other constraints such as
security and compliance regarding data storage location. Unfortunately, in existing programming languages,
dynamic placement conflicts with static reasoning about distributed programs: the flexibility required by
dynamic placement hinders statically tracking the location of data and computation.

In this paper we present Dyno, a programming language that enables static reasoning about dynamic
placement. Dyno features a type system where values are explicitly placed, but in contrast to existing
approaches, placed values are also first class, ensuring that they can be passed around and referred to from
other locations. Building on top of this mechanism, we provide a novel interpretation of dynamic placement
as unions of placement types. We formalize type soundness, placement correctness (as part of type soundness)
and architecture conformance. In case studies and benchmarks, our evaluation shows that Dyno enables
static reasoning about programs even in presence of dynamic placement, ensuring type safety and placement
correctness of programs at negligible performance cost. We reimplement an Android app with ~7K LOC
in Dyno, find a bug in the existing implementation, and show that the app’s approach is representative of a
common way to implement dynamic placement found in over 100 apps in a large open-source app store.

CCS Concepts: » Software and its engineering — Distributed programming languages; Domain specific
languages; « Theory of computation — Distributed computing models.
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