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Dynamic Placement



Dynamic Placement

• Caching

• Geo-Replication

• Hybrid Cloud

• High-Performance 
Computing
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Safe Placement and Static Checking



Safe Placement and Static Checking

• Placement is an explicit static property

• None addresses dynamic placement



Achieving Safe Dynamic Placement 

with Placement Types
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What are Placement Types? 

// The architecture is:
@peer type Client <: { type Tie <: Single[Server] }
@peer type Server <: { type Tie <: Multiple[Client] with Multiple[Server] }

// All clients have this String variable
var message: String on Client = "Greetings Earthlings"

// All servers can fetch the messages of their connected clients
def hashMessages(seed: Int): List[String] on Server =

on[Client].run.capture(seed) {
hash(message, seed)

}.asLocalFromAll



Re-Interpreting Type System Features

as Placements

A Principled Approach to Placement Safety



Interpreting Types as Placements

Types
Int, Boolean, String

Placement Types
Client, Server, Database

Param. Polymorphism
Map[K,V], Set[T], Either[S,T]

Place-Polymorphic Modules
LeaderElection[P], DistHashMap[P]

Dynamic Placement
DB|Cache, CPU|GPU, LocalFS|RemoteFS

[OOPSLA 2018]

[ECOOP 2019]
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Interpreting Types as Placements

Types
Int, Boolean, String

Placement Types
Client, Server, Database

Param. Polymorphism
Map[K,V], Set[T], Either[S,T]

Place-Polymorphic Modules
LeaderElection[P], DistHashMap[P]

Union Types
Peano Numbers, Linked Lists, Options

Dynamic Placement
DB|Cache, CPU|GPU, LocalFS|RemoteFS

Type System Placement System 
[OOPSLA 2018]

[ECOOP 2019]

[OOPSLA 2023]



Union Placement Types

Statically Capture 
Placement Uncertainty



Solution: Union Placement Types

• First-class placed type: Data at (P | Q)

• Static uncertainty and dynamic certainty

• Eliminate runtime checks when access is safe



Solution: Union Placement Types

• Remote references inhabit placement unions

• Introduced with remote ref

def readFromCache(k: Key): (Data at Cache) on Cache =
remote ref query(k)

• Eliminated with deref – typechecks if the architecture allows it

readFromCache("splash23").deref : Future[Value]



Solution: Union Placement Types

• Introduced via subsumption T at P <: T at (P | Q)

def readFromCache(k: Key): Data at (DB | Cache) on Cache =
remote ref query(k)

• Eliminated with toEither[P, Q]

data.toEither[Cache, DB] : Either[Data at Cache, Data at DB]



oString()
tsWith("file://")) {
never happen
oid.os.FileUriExposedException

Evaluation: URLs as
References



https://github.com/fennifith/Alarmio/blob/main/app/src/main/java/me/jfenn/alarmio/utils/ImageUtils.java

Evaluation: URLs as References
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https://github.com/fennifith/Alarmio/blob/main/app/src/main/java/me/jfenn/alarmio/utils/ImageUtils.java

Evaluation: URLs as References



133 out of ~3K Android apps encode
dynamic placement as URLs.

(F-Droid)

(VLC)

(Element.io)

Evaluation: URLs as References



Evaluation: AntennaPod

• 5.1k ★
• 1.2k forks

• 500K+ downloads on the Play Store

• ~55.5 KLoC



Evaluation: AntennaPod
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Evaluation: AntennaPod in Dyno
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Evaluation: AntennaPod in Dyno
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Evaluation: Performance



More goodies in the paper

• Case studies 

• Comparative evaluation

• Implementation overview

• Formalization

• Theorems (and proofs in Appendix B)



Conclusion

+

Data at (P | Q)

Dynamic Placement Safe Placement
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