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Abstract

Choreographic languages aim to express multiparty communication protocols, by providing primitives

that make interaction manifest. Multitier languages enable programming computation that spans

across several tiers of a distributed system, by supporting primitives that allow computation to

change the location of execution. Rooted into different theoretical underpinningsŮrespectively

process calculi and lambda calculusŮthe two paradigms have been investigated independently by

different research communities with little or no contact. As a result, the link between the two

paradigms has remained hidden for long.

In this paper, we show that choreographic languages and multitier languages are surprisingly

similar. We substantiate our claim by isolating the core abstractions that differentiate the two

approaches and by providing algorithms that translate one into the other in a straightforward way.

We believe that this work paves the way for joint research and cross-fertilisation among the two

communities.
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1 Introduction

Programming concurrent and distributed systems is notoriously hard. Among other issues, it

requires dealing with coordination and predicting how multiple participants will interact at

runtime, for which programmers do not receive adequate help from mainstream programming

abstractions and technology [29, 25, 38].

The quest for Ąnding elegant languages and methodologies that can help with concurrent

and distributed programming has been a major focus of the research community for decades,

including the seminal actor model and calculus of communicating systems [21, 31]. In this

work, we are interested in two kinds of languages that have been recently gaining attention:

choreographic languages [32, 2] and multitier languages [48]. Choreographic languages

are designed to express multiparty communication protocols, by providing primitives that

make interaction manifest. On the other hand, multitier languages allow for programming

computation that spans across several tiers of a distributed system, by providing primitives

that allow computation to change location of execution.

Both choreographic and multitier languages aim at making concurrent and distributed

programming more effective, and have inspired several research and industrial language

designs. However, choreographic and multitier languages stem from different ideas; they

adopt different terminologies; they look different; they have evolved different features; and

they have found different applications in practice. Perhaps because the design principles of

choreographic and multitier languages come from different angles, the two communities have

proliĄcally evolved independently. However, as a consequence, the commonalities and actual

differences between the two research lines remain unclear, which impedes cross-fertilisation.

In this paper, we offer a new perspective on the relationship between choreographic and

multitier languages. We show that, despite their different starting points and evolutions,

they share a strong core idea that classiĄes them both as what we call multiparty languagesŮ

languages that describe the behaviour of multiple participants. Leveraging this commonality,

it is possible to derive choreographic programs from multitier programs, and vice versa. Our

aim is to provide a way for each community to access the other, encouraging cross-fertilisation.

We outline our investigation and contributions:

In Section 2, we give an overview of the essential features of choreographic and multitier

languages. We recap the history of the two approaches and identify their key differences,

which lie in perspective (objective vs subjective) and in the modelling of communications

(manifest vs non-manifest). We also pinpoint the commonality that classiĄes choreographic

and multitier languages as multiparty.

In Section 3, we present an example use case for both choreographic and multitier

programming, which introduces the concrete choreographic and multitier programming

languages that we will use in the rest of our development: Choral [19] and ScalaLoci [46].

In Section 4, we introduce Mini Choral and Mini ScalaLoci, two representative but

minimal languages for choreographic and multitier programming, respectively. Mini

Choral and Mini ScalaLoci dispense with the features that are not essential parts of

their respective paradigms, which allows us to study how the essential differences can be

bridged in the next section.

In Section 5, we deĄne algorithms for translating programs in Mini Choral to programs in

Mini ScalaLoci, and vice versa. The translations deal with the changes in perspective and

manifestation of communications between the two paradigms. For example, translating

a multitier program into a choreographic one requires synthesising a communication

protocol that enacts the necessary communications among participants.
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Our translations are not just of inspiration to see the connection between the two

paradigms (which we leverage in the next section), but also open a window towards the

future sharing of theoretical and practical results. An example for each direction: by

translating a multitier program into a choreographic one and then using a choreographic

compiler to generate executable code, we can know statically the pattern of communica-

tions that will be enacted by the executable code (this property is called ŞChoreography

ComplianceŤ [19] or ŞEndPoint Projection TheoremŤ [4]); by translating a choreographic

program into a multitier one and then using a multitier compiler to generated executable

code, we can reuse all the machinery developed by the multitier community to generate

code for different technologies (e.g., the code generated for one participant is in JavaScript

for a web browser while the code for another might be code runnable on the Java Virtual

Machine for a server).

Our study shows that, while choreographic and multitier programming languages are

different enough to be independently useful, they are also near enough to beneĄt from

cross-fertilisation. In Section 6, we report on important features that have been developed

separately in the choreographic and multitier research lines. We Ąnd that important

features for the development of concurrent and distributed systems have been developed

for one paradigm but not the other. Inspired by our newfound connection, we discuss

how these features could be ported over to the other paradigm in the future, setting up

future work enabled by our view.

2 Background: Choreographic and Multitier Programming Languages

In this section, we give some background on choreographic and multitier languages, and

discuss their differences and similarities.

2.1 Choreographic Languages

Choreographic languages are inspired by the famous ŞAlice and BobŤ notation, or security

protocol notation [34]. The idea is to deĄne how the different participants of a system should

communicate (or interact)Ůwhich later inspired also message sequence charts and sequence

diagrams [24]. Textual and graphical choreographic languages have already been adopted in

industry as speciĄcation languages in different settings ranging from business processes, e.g.,

the choreographic language in OMGŠs Business Process Model and Notation, to web services,

e.g., W3CŠs Web Services Choreography Description Language [37, 45].

The essence of a choreographic language is the capability of expressing explicitly data Ćows

from a participant to another through communication, and of composing such communications

into larger structures. In other words, choreographies make interaction and the structure of

interaction protocols manifest. A communication from a participant, Alice, to another, Bob,

is written as follows:

Alice.userId -> Bob.x : ch

The statement above reads: Alice sends its userId (a local variable storing a user identiĄer)

to Bob, which stores it in its local variable x, and the communication takes place through the

channel ch.

Communication statements can be composed in larger and more sophisticated protocols,

for example using the sequential operator Ş;Ť. In the following protocol snippet: after

interacting with Alice, Bob forwards to Charlie the user identiĄer that it received through a

separate channel ch2.

ECOOP 2021
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Figure 1 Choreographic Programming.
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Figure 2 Multitier Programming.

Listing 1 A simple choreography with three participants.

1 Alice.userId -> Bob.x : ch;

2 Bob.x -> Charlie.y : ch2;

In the paradigm of choreographic programming [32], choreographic languages are full-

Ćedged programming languages: developers write the implementation of an entire multiparty

system as a choreography, and then a compiler automatically generates an executable

program for each participant. This process is depicted in Figure 1. Choreographies resemble

play scripts, written from an external point of view, describing the interactions among all

participants. We call this view objective. Participants, like Alice and Bob, are typically

referred to as roles in choreographies, and the procedure that generates the executable

program for each role is called projection (or endpoint projection) [5, 14].

The code in Listing 1 is valid code in the Chor language, the Ąrst implementation of

choreographic programming [32, 5]. Chor targets microservices: given that code (with

appropriate boilerplate), Chor would generate executable programs of microservices that

implement Alice, Bob, and Charlie. Choreographic programming has been applied to other

settings, e.g., information Ćow [26], parallel algorithms [13], cyber-physical systems [28, 27],

runtime adaptation [14], and integration processes [18].

2.2 Multitier Languages

Multitier languages are inspired by one of the ideas proposed with ambient calculi [6]. In this

kind of process calculi, terms express the place (the ŞambientŤ) at which computation occurs.

Computations that take place at different locations can be nested, which enables describing

multiparty systems. It was later shown that the idea can be combined with well-known

abstractions, by developing a variation of λ-calculus with locations called Lambda 5 [33].

This solution prompted the development of multitier languages [43, 11, 48], which extend

existing programming languages with locations. The term multitier comes from the fact that

these languages were mostly developed for web programming, where tiers is used to refer to

the typical participants of a web system (e.g., client, backend server, and database).
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The crux of a multitier language is the capability of hopping from the point of view of

a participant to that of anotherŮthe multitier language by Serrano et al. is aptly called

ŞHopŤ [43]. When hopping from a participant to another, it is possible to move data

from the participant that we are leaving to the participant that we are going toŮenabling

communication. As an example, consider a remote procedure call from a client to server. In a

recent incarnation of multitier programming that builds on the Scala language, ScalaLoci [46],

this can be written as follows (for simplicity of presentation, we omit library calls that would

be necessary to deal with asynchrony):

1 def rpc(input: String): String on Client = on[Client] {

2 val result =

3 on[Server].run.capture(input) {

4 expensiveFunction(input)

5 }.asLocal

6 return result

7 }

Participants are referred to as peer types in ScalaLoci. The method rpc above is deĄned

as a block of code that starts at the client peer (on[Client]). The client stores the result

of some computation in its local variable result, but this computation is performed at the

server. This result is achieved by ŞmovingŤ to the server with the instruction on[Server]. The

invocation of method run, right afterwards, models some computation, and capture(input)

means that we want to move the content of the local variable input from the peer that we are

leaving (the client) to the one that we are going to (the server). How this move is achieved

is left to the implementation (ScalaLoci generates a communication strategy automatically).

The server then runs an expensive function on the input, and the execution goes back to the

clientŮthe code block at the server ends. The invocation of asLocal ensures that the return

value of the code at the server is moved to the location of the enclosing scope (the client).

We Ąnally return the result at the client.

Like choreographic programming languages, multitier languages come with a compiler

that turns the multiparty view of the system into executable programs. This process is

depicted in Figure 2. Given a multitier program, a multitier compiler generates an executable

program for each peer type (in the case of Section 2.2, these would be client and server). The

procedure for generating code is called splitting. The nested ŞdialoguesŤ of peers inside the

multitier program depict that a multitier program has many viewpoints, switching regularly

from the point of view of a peer to that of another. Nevertheless, code is written with the

viewpoint of the peer we are currently in. For this reason, we say that multitier programs

adopt a nested subjective view. Most multitier programming approaches focus on the Web

domain [43, 11, 41, 9, 40, 42] with a client tier, a server tier and potentially a database

tier. ScalaLoci broadens the scope to support a greater variety of distributed software

architectures such as masterŰworker patterns often used in cluster computing or peer-to-peer

models. Multitier programming has been further used to reason about concurrency [36],

security [3] and data locality [7], and applied to information Ćow [10, 49, 20], software deĄned

networks [35] and high-performance computing [44].

2.3 Towards Linking Choreographic to Multitier Languages

The two communities of choreographic and multitier languages have proliĄcally evolved

independently [2, 48]. They adopted different design principles, and they have found different

practical applicationsŮmost notably service-oriented computing for choreographies and

web development for multitier programming. As a result, they have also developed several

features independently (we discuss some of the most important ones in Section 6). In

ECOOP 2021
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addition, the two communities have been facing different challenges. For example, multitier

programming languages historically tackle the problem of Şimpedance mismatchŤ: the

necessity of handling data conversions and heterogeneous execution engines in the web

(the Google Web Toolkit is a multitier framework that contributes to this research area).

Instead, choreographic programming mainly aimed at achieving Şchoreography complianceŤ:

providing the guarantee that distributed systems communicate as expected and with desirable

properties (like liveness).

Yet, the two paradigms are clearly linked. We drew Figure 1 and Figure 2 with the

intention of highlighting such connection. Indeed, despite differences in both terminologies

and methods, the strategies of choreographic and multitier programming languages share a

similarity: both deĄne the behaviour of a multiparty system in a single compilation unit, and

then offer ways to synthesise executable implementations for the participants. We thus identify

both kinds of languages as instances of the larger class of multiparty languagesŮleaving the

class open to future additions. We see value in both techniques for multiparty programming.

In choreographies protocols are manifest, which makes them easy to understand. Multitier

programs give access to multiparty programming with a developing experience that resembles

standard Şlocal programmingŤ by leveraging scoping.

Despite both choreographic and multitier languages sharing the multiparty approach,

they remain pretty diverse in terms of theoretical background. The theory of choreographic

language typically stands on process calculi, whereas multitier models build on λ-calculus [22,

5, 23, 14, 48]. This is likely an important reason why the link between choreographic and

multitier languages has been overlooked for long. Very recently, however, it has been shown

that object-oriented languages can be extended to capture choreographies, by generalising

the notion of data type to data types located at multiple roles [19]. In the resulting language,

called Choral, a choreography among a few roles can be expressed as an object. For example,

we can write the choreography in Listing 1 in Choral as follows:

1 class Example@(Alice, Bob, Charlie) { // the three roles of the protocol

2 DiDataChannel@(Alice,Bob)<Serializable> ch; // channel from Alice to Bob

3 DiDataChannel@(Bob,Charlie)<Serializable> ch2; // channel from Bob to Charlie

4

5 /* constructor omitted */

6

7 public UserID@Charlie run(UserID@Alice userId) { // the protocol

8 UserID@Bob x = ch.<UserID>com(userId); // Alice.userId -> Bob.x : ch

9 return ch2.<UserID>com(x); // Bob.x -> Charlie.y : ch2

10 }

11 }

BrieĆyŮas we give a more detailed description of Choral programs in Section 3.2Ůthe

Example class declares three roles (Alice, Bob, and Charlie) and two directed channels (ch from

Alice to Bob and ch2 from Bob to Charlie). These correspond to the roles and channels assumed

in Listing 1. The protocol described in Listing 1 is implemented by method run that takes

an instance of UserID located at Alice and returns one located at Charlie passing through Bob.

Communication happens by invoking method com of the two channels.

Choral helps in leveling the playĄeld with multitier programming. Indeed, we now have

an object-oriented incarnation of choreographic programming that we can use to compare to

object-oriented multitier languages, here represented by ScalaLoci. In the next sections, we

leverage this common ground and take Choral and ScalaLoci as representative languages for

their respective paradigms.
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Email Client Email Server

User ID

Last Checkout Timestamp

List of Emails

opt
( Client is on a flat-rate connection )

List of Email IDs

List of Attachments

Figure 3 Sequence diagram for context-aware e-mail fetching.

3 Overview of Choral and ScalaLoci

In this section, we give an overview of the representative languages for choreographic and

multitier programming that we have chosen, Choral and ScalaLoci, by using them to deal

with a simple yet comprehensive example of a context-aware protocol for e-mail fetching.

3.1 A Context-Aware Email-Fetching Protocol

Before delving into the details of the two implementations, we discuss brieĆy the protocol

that we want to program. A depiction as a sequence diagram is given in Figure 3. The

protocol deĄnes an interaction between an Email Client and an Email Server. SpeciĄcally,

the Client sends its identiĄcation tokenŮhere simpliĄed as User IDŮand the timestamp of

the last e-mail checkout to the Server. The Server returns the list of e-mails received after

the timestamp to the Client. After the above interaction, the Client and the Server enter

an optional block. The optional block is executed depending on the context of the client,

namely, if the connection from the Client to the Server is Ćat-rate, i.e., if the connection fee

paid by the Client is independent from its usage. If that is the case, the Client sends the

Server the list of e-mail IDs retrieved in the previous interaction to fetch their attachments.

The Server concludes the optional part of the protocol by sending to the Client the requested

attachments.

3.2 A Choreographic Programming Implementation with Choral

In Listing 2, we use Choral to implement the protocol from Figure 3. The example

illustrates the main concepts of the choreographic programming approach and how Choral

captures them in the object-oriented setting.

In Choral, objects have types of the form T@(R1, ..., Rn), where T is the interface of the

object (as usual), and R1, . . . , Rn are the roles that collaboratively implement the object. As

we see below, Choral supports two notations for denoting the roles over which an object

is distributed: the standard form @(A, ..., Z) and the contracted form @A, for objects that

belong to one role (shortcut for @(A)). Incorporating roles in data types makes distribution

manifest at the type level.

ECOOP 2021
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Listing 2 Choral implementation for the context-aware e-mail fetching example.

1 enum Choice@Role { THEN, ELSE }

2

3 class EmailSystem@(Client, Server) {

4 private MailServerDB@Server serverDB = ...;

5 private MailDB@Client clientDB = ...;

6 private SymChannel@(Client, Server)<Serializable> ch = ...;

7

8 void updateEmails(UserId@Client userId) {

9 UserId@Server id = userId >> ch::com;

10 Timestamp@Server timestamp = clientDB.lastCheckOut() >> ch::com;

11 List@Client<Email> emails = serverDB.since(id, timestamp) >> ch::com;

12 clientDB.update(emails);

13 if (ClientLib@Client.isOnFlatRate()) {

14 Choice@Client.THEN >> ch::select;

15 clientDB.extractIds(emails) >> ch::com

16 >> serverDB::getAttachments >> ch::com

17 >> clientDB::updateAttachments;

18 }

19 else {

20 Choice@Client.ELSE >> ch::select;

21 }

22 }

23 }

In Listing 2, at Line 3, we deĄne a class EmailSystem implemented by two roles: the Client

and the Server. The method updateEmails (Line 8) implements the actual protocol from

Figure 3. Lines 4Ű6 declare class-level private objects, i.e., accessible from the updateEmails

method and other (omitted) ones within the class. SpeciĄcally, at Line 4, we have the

MailServerDB located at the Server. At Line 5, we Ąnd the complementary MailDB of the

Client. At Line 6, we deĄne the object used to transfer data between the two roles: a

SymChannelŮstanding for symmetric channelŮshared between the two roles and able to

transmit Serializable objects. We omit the initialisation of the abovementioned objects.

Considering the description of the implementation of the e-mail fetching protocol, we look

at the updateEmails method (Line 8). The method does not return a value (void) and takes

as input the UserIdŮwhich simpliĄes the user authentication procedure here, for brevityŮto

identify the user of the Client at the Server.

In the body, at Line 9, we pass the UserId to the Server. We do this by invoking the

method com of the ch SymChannel giving to it as argument the userId. This is done by the

expression userId >> ch::com which uses the Choral chaining operator >> and that corresponds

to the expanded expression ch.com(userId). To make Choral programs closer to standard

choreographic notation, where data Ćows from left to right, Choral borrows the forward

chaining operator >> from F#: exp >> obj::method is syntactic sugar for obj.method(exp).

The method com of the SymChannel transfers the value of the sender given as input into

an equivalent representation of the value at the receiver. In this case, the sender is the

Client (where the UserId object lives) and the receiver is the Server, which stores the result

of the communication into variable id which is an object of type UserId at its locationŮi.e.,

UserId@Server.

The transfer of the Timestamp from the Client to the Server is similar (Line 10): we retrieve

the object from the clientDBŮinvoking method lastCheckOutŮand we transfer it to the Server

thought the SymChannel. Then, to fetch the e-mails, the Client receives a transmission from

the Server. The Server interrogates its local database (serverDB) by extracting all e-mails



S. Giallorenzo et al. 22:9

belonging to the id of the Client and received since its last checkout (indicated by the

timestamp) and sends them to the Client via their shared SymChannel. At Line 12, the Client

uses the received list of emails to update its local database (clientDB).

Lines 13Ű20 implement the optional part of the protocol from Figure 3. First, the Client

checks whether it is using a Ćat-rate connectionŮthis is done through the static library

ClientLib and its method isOnFlatRate.

The if-else block at Lines 13Ű20 allows us to explain the concept of knowledge of choice

(a hallmark element of choreographic programming) and how Choral implements it. BrieĆy,

the concept of knowledge of choice indicates a fork in the Ćow of a program among alternative

behaviours, where the concerned roles should coordinate to ensure that they agree on which

behaviour they should enact. In choreographic languages, this issue is typically addressed

by deĄning a ŞselectionŤ primitive to communicate constants drawn from a dedicated set of

ŞlabelsŤ, so that the compiler has enough information to build code that can react to choices

made by other roles [5, 14]. In Choral, this is implemented by channel methods that can

transmit instances of enumerated types between roles. Conveniently, the SymChannel used

in the example also supports selections via its select methods. In Listing 2, we Ąnd the

implementation of the knowledge of choice of the conditional at Line 14 (where the Client

ŞdecidesŤ to fetch the attachments) and at Line 20 (which skips the retrieval). In the example,

we implement the choice by deĄning the Choice enum class at Line 1Ůnote that we use the

identiĄer Role for the single role that owns the Choice object in its declaration, instantiated

at the Client at Lines 14 and 20.

If the Client uses a Ćat-rate connection, the chained statement at Lines 15Ű17 execute:

Ąrst (Line 15) the Client sends to the Server the IDs of the e-mails (retrieved through

extractIds(emails)) whose attachments it wants to retrieve, then (Line 16) the Server uses

the received ids to extract from its database (serverDB) the attachments and it send them

back to the Client, and Ąnally (Line 17) the Client uses the received attachments to update

its local database.

3.3 A Multitier Programming Implementation with ScalaLoci

We now use ScalaLoci to illustrate the multitier programming approach, implementing the

protocol from Figure 3 in Listing 3.

In ScalaLoci, the location of different values is speciĄed through placement types. The

placement type T on P represents a value of type T on a peer P. Developers can freely deĄne

the different components, called peers, of the distributed system. For instance, in the example,

serverDB is a MailServerDB placed on the Server (Line 5) and clientDB is a MailDB placed on the

Client (Line 6).

Peers are deĄned as abstract type members (Lines 2 and 3). Further, peer types express

the architectural relation between the different peers by specifying ties between peers,

thus supporting generic distributed architectures. Ties statically approximate the runtime

connections between peers. In the example, we deĄne a single tie from client to server (Line 2)

and from server to client (Line 3). A single tie expresses the expectation that a single remote

instance is always accessible. In the speciĄed architecture, a client connects to a single server

and a server program instance handles a single client.

The updateEmails method (Line 8) encapsulates the communication logic from Figure 3. It

takes the UserId for identifying the client as input. The implementation diverts control Ćow

to the server using a nested on[Server].run expression (Line 10). The capture clause transfers

both the timestamp and the userId from the client to the server. Inside the server expression
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Listing 3 ScalaLoci implementation for the context-aware e-mail fetching example.

1 @multitier object EmailSystem {

2 @peer type Client <: { type Tie <: Single[Server] }

3 @peer type Server <: { type Tie <: Single[Client] }

4

5 private val serverDB: MailServerDB on Server = ...

6 private val clientDB: MailDB on Client = ...

7

8 def updateEmails(userId: UserId): Unit on Client = on[Client] {

9 val timestamp: Timestamp = clientDB.latestCheckout

10 val emails: List[Email] = on[Server].run.capture(userId, timestamp) {

11 serverDB.since(userId, timestamp)

12 }.asLocal

13

14 clientDB.update(emails)

15

16 if (ClientLib.isOnFlatRate) {

17 val ids = clientDB.extractIds(emails)

18 clientDB.updateAttachments(

19 on[Server].run.capture(ids) { serverDB.getAttachments(ids) }.asLocal)

20 }

21 }

22 }

(Line 11), the server queries its local serverDB database to extract all e-mails belonging to the

userId of the client received since its last checkout (indicated by the timestamp). The result

of the server-side expression is returned to the client using asLocal (Line 12).

In ScalaLoci, accessing remote values via the asLocal marker creates a local representation

of the remote value by transmitting it over the network. For simplicity, we use synchronous

communication. In general, ScalaLoci allows developers to choose among different trans-

mitters, most notably one that wraps local representations of data in futures to account for

network delay and communication failures.

The client then uses the received list of emails to update its local clientDB database (Line 14).

Lines 16Ű20 implement the optional part of the communication logic from Figure 3. If the client

is currently using a Ćat-rate connectionŮas indicated by the static ClientLib.isOnFlatRate

methodŮthe client initiates a second server-side computations using on[Server].run (Line 19).

The client transfers the IDs of the e-mails (retrieved through extractIds(emails))Ůwhose

attachments to receiveŮto the server, which extracts the attachments from its serverDB

database and returns them to the client, which then updates its local clientDB with the

received attachments (Line 18).

4 Mini Choreographic and Multitier Languages

We now introduce Mini Choral and Mini ScalaLoci, minimal languages that omit most features

of their reference counterparts that are irrelevant to our study (like generics and inheritance).

This allows us to focus on the distinctive traits that characterise the choreographic and

multitier approaches, respectively. The minimality of the two languages is instrumental to

highlight their distinguishing features here and to focus on the salient points that deĄne their

reciprocal translations in Section 5. Next, we present the grammar of the two languages and

brieĆy describe the components that mark them respectively as choreographic and multitier

languages.
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Listing 4 Syntax of Mini Choral

Mini Choral C ::= class·id@(A)¶ Channel·Field·Method ♢

Type Expression Type ::= id@(A)

Channels Channel ::= DiChannel@(A, B)·ch_A_B

Field Field ::= Type·id

Method DeĄnition Method ::= Type·id(Type·id)¶ return·Exp ♢

Expression Exp ::= id ♣ Exp.id ♣ Exp.id(Exp) ♣ new·id@(A)(Exp)

♣ lit@(A) ♣ if·(Exp) ¶ Exp ♢·else·¶Exp♢ ♣ Exp; ·Exp

♣ ch_A_B.com(Exp) ♣ ch_A_B.select(Exp)

4.1 Mini Choral

Listing 4 displays the grammar of Mini Choral. C ranges over class declarations, Channel

ranges over channel declarations, Field ranges over class Ąelds, Method ranges over method

deĄnitions, Type ranges over type expressions, and Exp ranges over expression terms. The

metavariable id ranges over both class names, Ąelds, and variables. We use A, B, C to range

over role names. Here and in the reminder of the paper, we use overlines to denote sequences

of terms of the same sort and we denote concatenation of sequences using a comma.

The class declaration C deĄnes its name id, its owner roles A within the @( · · · ) clause,

the topology of directed channels available between roles in Channel, its Ąeld declarations

Field, and its suite of method deĄnitions Method.

In Mini Choral, we decided to focus on describing data flow and to limit ChoralŠs

expressivity regarding data distribution. That is, we allow only the declared class to be

distributed at multiple roles, while variables belong to only one role, with the exception of

Channels, which specify the network topology as a set of objects located (and able to transfer

single-role objects) between two roles. SpeciĄcally, Mini Choral supports only one-way

channels (drawn from Choral and called DiChannels) of the shape DiChannel@(A,B) ch_A_BŮ

with A and B roles of the enclosing class. In this work, the loss of expressiveness of the Mini

variant with respect to ChoralŮwhich supports the deĄnition of multi-role classes/Ąelds

without the above limitationsŮlends itself to simplify the algorithms in our translation

in Section 5. In the general case, Choral can express arbitrary channel topologies and

user-deĄned implementations of communications semantics (e.g., asymmetric channels or

bidirectional symmetric channels) [19]Ůwhereas most choreographic languages assume a

complete topology of channels between all roles in a choreography with a Ąxed communication

semantics [5, 14].

Following the considerations above, we restrict type expressions Type to deĄne variables

located at one role id@(A). This is reĆected in the deĄnition of Fields but also in method

deĄnitions, where we additionally assume the return type Type and the types of arguments

Type·id to be located at the same role. The body of the method is the single statement

return·Exp. Regarding expressions, we focus our description on the relevant, non-standard

elements: object creation new·id@(A)(Exp) happens for classes at only one role and literals

lit@(A) (integers, strings, etc.) are always located at one role. In Exp, we use Exp; Exp to

represent a block which evaluates the expression on the left, discards its value, and returns

the evaluation of the expression on the right.

Although already captured by the grammar, we include channel invocations of the shape

ch_A_B.com(Exp) and ch_A_B.select(Exp) to highlight their relevance in the language.

DiChannels support both methods com, meant to transfer data between two roles, and select,

used to solve knowledge-of-choice challenges in conditionals (that is, informing a role of a

local choice made by another role, e.g., by using a conditional) [19]. When using selects, we
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Listing 5 Mini Choral implementation for the context-aware email fetching example.

1 class EmailSystem@(Client, Server) {

2 DiChannel@(Client, Server) ch_Client_Server

3 DiChannel@(Server, Client) ch_Server_Client

4

5 MailServerDB@Server serverDB

6 MailDB@Client clientDB

7

8 Unit@Client updateEmails(UserId@Client userId) {

9 return contextAwareUpdate(getEmails(userID, clientDB.lastCheckOut())))

10 }

11

12 List@Client getEmails(UserId@Client id, Timestamp@Client ts) {

13 return ch_Server_Client.com(

14 serverDB.since(ch_Client_Server.com(id), ch_Client_Server.com(ts))

15 }

16

17 Unit@Client contextAwareUpdate(List@Client emails) {

18 clientDB.update(emails);

19 if (ClientLib.isOnFlatRate()) {

20 ch_Client_Server.select(Choice@Client.THEN);

21 clientDB.updateAttachments(

22 ch_Server_Client.com(

23 serverDB.getAttachments(

24 ch_Client_Server.com(clientDB.extractIds(emails)))))

25 }

26 else {

27 ch_Client_Server.select(Choice@Client.ELSE); Unit

28 }

29 }

30 }

assume that the compiler provides us with a Choice enum class at one role, with a THEN and

ELSE inhabitants (as presented at Line 1 in Listing 2).

4.1.1 Example: Mini Choral Expressiveness

We conclude the presentation of our minimal choreographic language by illustrating its

expressiveness with respect to its reference Choral language with an implementation of the

email-fetching protocol presented in Section 3.2, Listing 2.

We report the code of the Mini Choral implementation of the protocol in Figure 3 in

Listing 5. In the Listing, the main notable difference with Listing 2 is that, by removing

assignments, we rely on method bindings to reuse variables in ŞsubsequentŤ (;) invocations.

Although divided into three sub-methods, we Ąnd the updateEmails method that invokes the

getEmails method, which fetches the emails from the Server by sending to it the id of the

user and the timestamp (ts) of the last checkout and transmitting back the result of the

extraction on the serverDB. Notice that the return type of the getEmails method omits the

deĄnition of the ŞcontentŤ of the list due to the lack of generics. As expected, by omitting

generics we also drop support for specifying/checking the correct/expected content of the

collectionŮan orthogonal guarantee with respect to the speciĄcation/check of the Ćow of

data among roles. The lack of generics does not hamper the expressiveness of the language

to capture the correct movement of the data from the Server to the Client and vice versa.

After obtaining the emails, we can apply method contextAwareUpdate which updates the email

database of the client and proceeds to conditionally retrieve the attachments of the fetched

emails. This is done by informing the Server of the choice, via the select methods.
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Listing 6 Syntax of Mini ScalaLoci

Mini ScalaLoci L ::= @multitier object·¶ Peer ·Field·Method ♢

Peer Peer ::= @peer type·A·<:¶·type Tie <:·Any·with·Single[B]·}

Placement Type Expression PlacedType ::= Type·on·A

Type Expression Type ::= id

Field Field ::= val·id : PlacedType

Method DeĄnition Method ::= def·id (id : Type) : PlacedType· = ·PlacedExp

Placed Expression PlacedExp ::= on[A]·¶ Exp ♢

Expression Exp ::= id ♣ Exp.id ♣ Exp.id(Exp) ♣ new·id(Exp)

♣ lit ♣ if·(Exp) ¶ Exp ♢·else·¶ Exp ♢ ♣ Exp; ·Exp

♣ on[A].run.capture(id)·¶ Exp ♢.asLocal

4.2 Mini ScalaLoci

Listing 6 displays the grammar of Mini ScalaLoci. L ranges over object declarations, Peer

ranges over peer declarations, Field ranges over class Ąelds, Method ranges over method

deĄnitions, Type ranges over type expressions, PlacedType ranges over placement type

expressions, Exp ranges over expressions, and PlacedExp ranges over placed expressions. The

metavariable id ranges over both class names, Ąelds, and variables. We use A, B, C to range

over peers.

The object declaration L deĄnes its name id, and its peers A and topology of directed

ties between the peers within the @peer type A <: { type Tie <: Any with Single[A] } clauses,

its Ąeld declarations Field, and its method deĄnitions Method. Fields associate a placement

type expression PlacedType to a variable.

Mini ScalaLoci is able to express different topologies rather than being restricted to a

fixed client-server model. This choice remarks the departure taken by ScalaLoci from other

multitier models and implementations [11, 12, 41, 42, 43], which assume a Ąxed client-server

or n-tier architecture of an application. Contrarily, in ScalaLoci, the developer deĄnes an

arbitrary number of peers and directional ties between them. In contrast to ScalaLoci,

Mini ScalaLoci only supports a single connected peer instance per peer type (drawn from

ScalaLociŠs Single ties) of the shape @peer type A <: { type Tie <: Any with Single[A] }Ůwith

A and B peers of the enclosing multitier module. (In Scala, with is the operator for constructing

intersection types.) In this work, the loss of expressiveness of the Mini variant with respect

to ScalaLoci lends itself to simplify the algorithms in our translation in Section 5.

In method deĄnitions, the return type PlacedType speciĄes a location, which places the

computation of the whole method on that peer, whereas the arguments only have types

but no placement id : ·Type. The body of the method is a placed expression PlacedExp that

speciĄes the placement of the contained expression Exp. Regarding expressions, we focus our

description on the main differences with Choral: In ScalaLoci, we locate expressions rather

than data and therefore neither instantiation new·id(Exp) nor literals lit (integers, strings,

etc.) carry placement annotations.

Nested remote blocks are encoded by on[A].run.capture(id)·{ Exp }.asLocal expressions,

which execute the nested expression on the peer A and returns its result via asLocal to

the surrounding peer, i.e., switching the current perspective to another peer for evaluating

the nested expression. Note that in the Mini variant, we keep the run, capture and asLocal

constructs to be close to the complete version of the ScalaLoci language (that is syntactic-

ally more Ćexible and supports optional capture clauses and asLocal on module-level value

bindings).
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Listing 7 Mini ScalaLoci implementation for the context-aware email fetching example.

1 @multitier object EmailSystem {

2 @peer type Client <: { type Tie <: Any with Single[Server] }

3 @peer type Server <: { type Tie <: Any with Single[Client] }

4

5 val serverDB: MailServerDB on Server

6 val clientDB: MailDB on Client

7

8 def updateEmails(userId: UserId): Unit on Client = on[Client] {

9 contextAwareUpdate(getEmails(userId, clientDB.lastCheckOut()))

10 }

11

12 def getEmails(id: UserId, ts: Timestamp): List on Client = on[Client] {

13 on[Server].run.capture(id, ts) { serverDB.since(id,ts) }.asLocal

14 }

15

16 def contextAwareUpdate(emails: List): Unit on Client = on[Client] {

17 clientDB.update(emails);

18 if (ClientLib.isOnFlatRate()) {

19 updateAttachments(clientDB.extractIds(emails))

20 }

21 else { () }

22 }

23

24 def updateAttachments(emailIds: List): Unit on Client = on[Client] {

25 clientDB.updateAttachments(

26 on[Server].run.capture(emailIds){

27 serverDB.getAttachments(emailIds)

28 }.asLocal

29 )

30 }

31 }

4.2.1 Example: Mini ScalaLoci Expressiveness

We show the implementation of the email-fetching example presented in Section 3.3, Listing 3

using our minimal multitier language to demonstrate its expressiveness with respect to its

reference ScalaLoci language.

Listing 7 shows the Mini ScalaLoci implementation of the communication scheme in

Figure 3. As with Mini Choral, the main notable difference with Listing 3 is that by removing

assignments, we rely on method arguments for scoped variable declarations instead. The

updateEmails method invokes the getEmails method, which fetches the emails from the Server

by sending to it the id of the user and the timestamp (ts) of the last checkout and transmitting

back the result of the extraction on the serverDB. Similar to Mini Choral, Mini ScalaLoci

also lacks generics, an orthogonal language feature. The lack of generics, however, does not

limit the expressiveness of the language to capture the correct topology of the system and

communication between the Server and the Client. After obtaining the emails, we apply

method contextAwareUpdate, which updates the email database of the client and proceeds to

conditionally retrieve the attachments of the fetched emails.

5 Choreographies to Multitier, Multitier to Choreographies

We now deĄne algorithms that translate programs in a Mini language to the other and

vice versa. The reason for deĄning the following algorithms is to present evidence of the

existence of a common root at the foundation of the two approaches. We show that the

mechanised procedures for their reciprocal translation are relatively simple. In the remainder
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Algorithm 1 Translation algorithm from Choral classes to ScalaLoci objects.

function choral2loci(class)

"class id@(Role) { Channel Field Method }" ← class

decls ← { }

for T ← Role do

ties ← { "Single[B]" | "DiChannel@(A, B) ch_A_B" ∈ Channel ∧ T = A }

decls ← decls ∪ { "@peer type·T ·<: ·¶·type Tie <: Any·with·ties }" }

end

for "idt@(A)·idn" ← Field do

decls ← decls ∪ { "val·id1· : ·id0·on·A" }

end

for "idt@(A)·id·(idtn@(A) iden) { e }" ← Method do

e′ ← choral2loci(e)

decls ← decls ∪ { "def·id(iden : idtn) : ·idt·on·A = ¶e′♢" }

end

return "@multitier object·id·¶·decls·♢"

end

of this section, for brevity, we use the names Choral and ScalaLoci to indicate their Mini

counterparts. We Ąrst present a translation algorithm from a Choral choreography to a

ScalaLoci multitier application (Section 5.1). Afterwards, we show a translation algorithm

from a ScalaLoci multitier application to a Choral choreography (Section 5.2).

Perspective translation Multitier and choreographic programming take different perspect-

ives on what parts of the language are annotated with locations. In Choral, all literals are

annotated by the role on which they operate, and the location of operators can be inferred

by the location of their argument. ScalaLoci assigns peers to expressions, which are then

written from the speciĄed peerŠs perspective.

While in simple cases there is a direct correspondence between a value on the role A in

Choral (1@A) and on a peer A in ScalaLoci (on[A] { 1 }), the difference is more obvious in

compound expressions (on[A] { 1 + 2 + 3 } vs. 1@A + 2@A + 3@A), where in ScalaLoci, only the

whole expression is annotated but the literals are not, whereas in Choral, only the literals

are annotated while the expression is not.

The translation algorithms perform such perspective change by grouping composed literals

on the same Choral role into a ScalaLoci placed expression and, in the opposite direction,

assigning the same Choral role to all literals in a ScalaLoci placed expression.

Further, we translate between ScalaLociŠs way of deĄning peers and their topology as type

members and ChoralŠs way of deĄning roles as class parameters and their communication

channels as class members.

Communication translation In ScalaLoci two peers communicate using asLocal. Given an

expression e on peer A, the expression on[B] { e.asLocal } describes how peer B can access the

value of e, implemented as a message with the value of e sent from A to B. In Choral, such

communication is represented by invoking the com method of a directional communication

channel, which takes a value on role A and returns it on role B.

The translation algorithms transform asLocal in ScalaLoci to an invocation of method

com of the appropriate channel in Choral and vice versa.
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Algorithm 2 Translation algorithm from Choral expressions to ScalaLoci expressions.

function choral2loci(expr)

return match expr with

case "e0; e1" with

"on[A]¶·e′

0·♢" ← choral2loci(e0)

"on[B]¶·e′

1·♢" ← choral2loci(e1)

captures← freeV ars(e0) ∩ currentMethodArguments

if A ̸= B then

"on[B]¶ on[A].run.capture(captures)·¶·e′

0·♢.asLocal; e′

1 }"

else

"on[B]¶·e′

0; e′

1·♢"

end

case "id" with

A ← roleOf(id)

"on[A]¶·id·♢"

case "lit@A" with

"on[A]¶·lit·♢"

case "new·id@A·(e)" with

"on[A]¶·e′·♢" ← choral2loci(e)

"on[A]¶·new·id(e′)·♢"

case "e0.id(e)" with

"on[A]¶·e′

0·♢" ← choral2loci(e0)

"on[B]¶·e′·♢" ← choral2loci(e)

assert A = B // receiver and arguments have the same role

"on[A]¶ e′

0.id(e′) }"

case "ch.select(e)" with

"Unit"

case "if·(e0)·¶·e1·♢·else·¶·e2·♢" with

"on[A]¶·e′

0·♢" ← choral2loci(e0)

"on[B]¶·e′

1·♢" ← choral2loci(e1)

"on[C]¶·e′

2·♢" ← choral2loci(e2)

captures← freeV ars(e0) ∩ currentMethodArguments

assert B = C // branches have the same role

if A ̸= B then

"on[B]¶·if·(on[A].run.capture(captures)·¶·e′

0·♢.asLocal)·¶·e′

1·♢·else·¶·e
′

2·♢ ♢"

else

"on[B]¶·if·(e′

0)·¶·e′

1·♢·else·¶·e
′

2·♢·♢"

end

case "ch_B_A.com(e)" with

"on[B]¶·e′·♢" ← choral2loci(e)

captures← freeV ars(e) ∩ currentMethodArguments

"on[A]¶ on[B].run.capture(captures)·¶·e′·♢.asLocal }"

end

end

5.1 From Choreographic Programming to Multitier Programming

Choral choreography classes to ScalaLoci multitier objects Algorithm 1 describes the

translation of Choral choreography classes to ScalaLoci multitier objects. We decompose the

class deĄnition to be transformed into its identiĄer id, the roles Role, the channel declarations

Channel, the Ąeld declarations Field and the method deĄnitions Method.

Each Choral role deĄnition is translated to a ScalaLoci peer deĄnition. Each channel

DiChannel@(A,B) ch_A_B between two roles is translated to a single tie, e.g., a directed one-to-one

tie, between two peers @peer type A <: { type Tie <: Any with Single[B] }.
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Algorithm 3 Translation algorithm from ScalaLoci objects to Choral classes.

function loci2choral(module)

"@multitier object id { Peer Field Method }" ← module

decls ← { }

roles ← { }

for "@peer type A <: { type Tie <: Any with·ties }" ← Peer do

roles ← roles ∪ { A }

for "Single[B]" ← ties do

decls ← decls ∪ { "DiChannel@(A,B) ch_A_B" }

end

end

for "val id1: id0 on A" ← Field do

decls ← decls ∪ { "id0@(A) id1" }

end

for "def id(iden : idtn): idt on A = { e }" ← Method do

e′ ← loci2choral(e)

decls ← decls ∪ { "idt@(A) id(idtn@(A)·iden) { e′ }" }

end

return "class id@(roles) { decls }"

end

The translation of Ąeld deĄnitions from Choral to ScalaLoci is straightforward. In Choral,

Ąelds are introduced with a base type and the residing role, followed by the name of the Ąeld

"idname@(idrole) idtype". In ScalaLoci, Ąelds are introduced as "val idname: idtype on idrole".

Similarly, method deĄnitions are translated. The algorithm returns a multitier object with

the same name and the translated deĄnitions as a body.

Choral choreography expressions to ScalaLoci multitier expressions Algorithm 2 describes

the translation of Choral expressions to ScalaLoci: the algorithm matches on the different

cases of Choral Exp terms and transforms each into the corresponding ScalaLoci code.

For sequencing e0; e1, both e0 and e1 are recursively transformed. If both subexpressions

agree on their placement, e.g., A = B, the complete sequence is placed on the same peer.

More interestingly, if the subexpressions are placed on different peers, we introduce a nested

remote block for e′

0
, which executes e′

0
on A and places the overall result of e′

1
on B. For the

remote block we generate a capture clause for all method-local variables that are free in e0.

The translations for identiĄers, literals and instantiation is straightforward, placing the

ScalaLoci expression on the peer according to the role speciĄed in the Choral code. Further,

the case for method invocation is similar since we assume that the receiver of a method

invocation and its arguments are on the same role. This assumption is expressed by the

assert statement in the algorithm and holds for every well-typed Mini Choral program (in

contrast to a Choral program). Selection does not exist in ScalaLoci. Hence, it is removed.

The case for branching makes a distinction similar to sequencing of whether the condition

agrees to the branches regarding their placement, e.g., A = B. If they agree, the complete

branching is placed on the same peer. Otherwise, we introduce a nested remote block for e′

0
,

which executes e′

0
on A and returns the result to B where the branches are placed. B then

acts as a coordinator to decide which of the branches to execute.

Finally, we translate ChoralŠs channel communication. For a channel from role B to A,

we generate a ScalaLoci expression, which runs a nested remote block for e′, which executes

e′ on B and returns the result to A.
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Algorithm 4 Translation algorithm from ScalaLoci expressions to Choral expressions.

function loci2choral(expr)

return match expr with

case "on[A]¶·e0; e1·♢" with

e′

0 ← loci2choral("on[A]¶·e0·♢")

e′

1 ← loci2choral("on[A]¶·e1·♢")

"e′

0; e′

1"
case "on[A]¶·id·♢" with "id"

case "on[A]¶·lit·♢" with

"lit@A"

case "on[A]¶ new id(e) ♢" with

e′ ← loci2choral("on[A]¶·e·♢")

"new·id@A(e′)"

case "on[A]¶·e0.id(e)·♢" with

e′

0 ← loci2choral("on[A]¶·e0·♢")

e′ ← loci2choral("on[A]¶·e·♢")

"e′

0.id(e′)"

case "on[A]·¶·if·(e0)·¶·e1·♢·else·¶·e2·♢·♢" with

e′

0 ← loci2choral("on[A]¶·e0·♢")

e′

1 ← loci2choral("on[A]¶·e1·♢")

e′

2 ← loci2choral("on[A]¶·e2·♢")

peers ← peersIn(e′

1) ∪ peersIn(e′

2)

channels ← { "ch_A_B" | B ∈ peers ∧A has tie to B }

thenSelects ← { "c.select(Choice@A.THEN)" | c ∈ channels }

elseSelects ← { "c.select(Choice@A.ELSE)" | c ∈ channels }

"if·(·e′

0·)·¶·thenSelects;·e′

1·♢·else·¶·elseSelects; e′

2·♢"

case "on[A]¶ on[B].run.capture(captures)·¶·e·♢.asLocal }" with

e′ ← loci2choral("on[B]¶e♢")

"ch_B_A.com(e′)"

end

end

5.2 From Multitier Programming to Choreographic Programming

ScalaLoci multitier objects to Choral choreography classes Algorithm 3 describes the

translation of ScalaLoci multitier objects to Choral choreography classes. We decompose the

multitier object to be transformed into its identiĄer id, the peer and tie declarations Peer ,

the Ąeld declarations Field and the method deĄnitions Method.

Each ScalaLoci peer deĄnition is translated to Choral role argument and each single tie

between two peers is translated to a DiChannel between two peers @(A,B).

The translation of Ąelds and methods from ScalaLoci to Choral is straightforward. The

algorithm returns a Choral class with the same name and the translated deĄnitions as body.

ScalaLoci multitier expressions to Choral choreography expressions Algorithm 4 describes

the translation of ScalaLoci expressions to Choral expressions. The algorithm matches on the

different cases of ScalaLoci Expr terms and transforms each of them into the corresponding

ScalaLoci code.

The translations for sequencing, identiĄers, literals, instantiation and method invocation

is straightforward, recursively transforming each subexpression.

In the case for branching, the translation needs to synthesise select expressions to

implement knowledge of choice (recall Section 3.2). Hence, we collect all peers used in the

branches and create select statements for all channels between those peers for both branches.
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Table 1 Overview of the feature comparison of choreographic and multitier programming.

Feature Choral ScalaLoci

Distributed Data Structures (Section 6.1.1) ✓ ×

Dynamic Topologies (Section 6.1.2) × ✓

Higher-Order Composition (Section 6.1.3) ✓ ×

Races (Section 6.1.4) − ✓

Fault tolerance (Section 6.1.5) ✓ ✓

Asynchrony (Section 6.1.6) ✓ ✓

Finally, we translate ScalaLociŠs nested remote blocks. For a remote expression placed

on A that executes e on B, we generate a Choral channel communication that transfers the

value of e from B to A.

6 A Unified Perspective

Although choreographic and multitier programming evolved in dissimilar ways, their coresŮ

represented by our two Mini languagesŮare close enough to let us deĄne in Section 5

straightforward translation algorithms in both directions and show the core features of both

approaches isomorphic.

Besides the more abstract purpose to present evidence of the closeness of the two

approaches, our translation algorithms are also directly useful in practice. Translating

Choral to ScalaLoci code enables the reuse of ScalaLociŠs middleware for Choral. In general,

translating to multitier programs is interesting because we can leverage the possibility of

compiling to different technologies.

Translating ScalaLoci to Choral code enables synthesising the choreography of the

multitier program. Making the protocol manifest supports both manually checking what

communications take place as well as automatic analyses (e.g., security).

We believe that both the multitier and choreographic research areas can greatly beneĄt

from cross-fertilisation and transfer of concepts already developed in one but lacking in the

other. As a glimpse of this fact, we dedicate Section 6.1 to describe some advanced features

present in only one of the two languages (Choral, ScalaLoci) and outline how they could be

integrated into the other in the future. We conclude this section by widening our scope on

the category of multiparty language in Section 6.2. We give an (incomplete) overview on

other languages that are neither multitier nor choreographic but share common traits that

can classify them as multiparty ones. We consider those languages valuable additions to the

multiparty category and subject of future research akin to this work.

6.1 Feature Comparison

We now discuss a few features that are important for concurrent and distributed programming.

Our discussion is summarised in Table 1, which shows which features are present in Choral and

ScalaLoci, respectively (the − in the table means partial support, explained in the relevant

paragraph where we discuss the feature). The Ąrst four features have evolved separately and

give potential for cross-fertilisation, whereas the last two are important features that have

been dealt in both worlds (yet separately).
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6.1.1 Distributed Data Structures

The @(R1, ..., Rn) type notation supported in Choral speciĄes the distribution of classes

and objects over roles. This is true also without taking into account communication. As an

example, let us consider the BiPair class below, which implements an incarnation of a Pair

class where the two values (referred to as left and right) of the pair belong to different roles:

1 class BiPair@(A,B)<L@X, R@Y> {

2 private L@A left;

3 private R@B right;

4 public BiPair(L@A left, R@B right) { this.left = left; this.right = right; }

5 public L@A left() { return this.left; }

6 public R@A right() { return this.right; }

7 }

As its Java counterpart, also BiPair is parametric with respect to its contents: we use

parameters L and R to capture the type of the left and right components of the pair. Then,

by specifying that L is owned by one role X and R is owned by another role Y, we indicate that

the two values in the pair must be at different roles (and they can capture different data

types, e.g., String and Integer). Indeed, adopting the same interpretation of Java generics,

Choral interprets role parameter binders so that the Ąrst appearance of a parameter is a

binder, while subsequent appearances of the same parameter are boundŮhence, given that

the declaration of type parameters <...> limits the scope of the of role parameters X and Y,

we are indicating that they cannot coincide. For completeness, we include in the deĄnition

of the BiPair class its Ąelds (left and right, respectively located at A and B), a constructor,

and the traditional accessors.

Besides showing the basic feature of inherent distribution supported by the Choral

type system, the example of BiPair is useful to illustrate that, also without considering

communications, Choral offers support in deĄning programs where the data at some role

needs to correlate with data at another, e.g., as in the case of distributed authentication

tokens.

Similar to Choral, in ScalaLoci, we use parameters L and R to capture the type of the left

and right components of the pair. Corresponding to ChoralŠs roles deĄnition, we deĄne an A

and a B peer type. We then specify that L is placed on a peer A and R is placed on a peer B:

1 @multitier trait BiPair[L, R] {

2 @peer type A

3 @peer type B

4

5 val left: L on A

6 val right: R on B

7 }

While we can deĄne distributed data structures similar to Choral, their usability is

more limited: they need to be composed at compile-time, because of ScalaLociŠs lack of

higher-order composition (see Section 6.1.3).

6.1.2 Dynamic Topologies and Homogenous Behaviours

A feature of ScalaLoci that is not covered in its Mini variant is the possibility for peer types

to abstract over multiple peer instances of the same type, e.g., a master-worker architecture

where a single master can connect to an arbitrary number of homogeneous (i.e., with the

same behaviour) worker nodes. Such a feature also enables dynamic topologies where peers

can join and leave the system at runtime. A variable number of peer instances is expressed in
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Listing 8 Distributed Architectures.

1 @multitier object P2P {

2 @peer type Peer <: { type Tie <: Multiple[Peer] }

3 }

4 @multitier object P2PRegistry {

5 @peer type Registry <: { type Tie <: Multiple[Peer] }

6 @peer type Peer <: { type Tie <: Optional[Registry] with Multiple[Peer] }

7 }

8 @multitier object MultiClientServer {

9 @peer type Server <: { type Tie <: Multiple[Client] }

10 @peer type Client <: { type Tie <: Single[Server] with Single[Node] }

11 }

12 @multitier object ClientServer {

13 @peer type Server <: { type Tie <: Single[Client] }

14 @peer type Client <: { type Tie <: Single[Server] with Single[Node] }

15 }

16 @multitier object Ring {

17 @peer type Node <: { type Tie <: Single[Prev] with Single[Next] }

18 @peer type Prev <: Node

19 @peer type Next <: Node

20 @peer type RingNode <: Prev with Next

21 }

ScalaLociŠs peer speciĄcation by not using a Single tie but a Multiple or an Optional tie, i.e.,

an arbitrary number or at most one remote peer of a given type can connect, respectively.

Listing 8 shows the deĄnitions for different topologies with their iconiĄcation on the

right. The P2P module deĄnes a Peer that can connect to arbitrary many other peers. The

P2PRegistry module adds a central registry, to which peers can connect. The MultiClient-

Server module deĄnes a client that is always connected to a single server, while the server

can handle multiple clients simultaneously. The ClientServer module speciĄes a server that

always handles a single client instance. For the Ring module, we deĄne a Prev and a Next

peer. A RingNode itself is both a predecessor and a successor. All Node peers have a single

tie to their predecessor and a single tie to their successor.

ScalaLoci allows to abstract over different peer instances of the same type and uniformly

receive values from multiple connected remote peers, asLocalFromAll returns a sequence that

contains the remote values from the different peers. Yet, a speciĄc peer instance client

can be selected via on(client).run { ... }.asLocal (using the client value referencing a peer

instance) instead of on[Client].run { ... }.asLocal (using the Client peer type). The handlers

remote[Client].join foreach { ... } and remote[Client].leave foreach { ... } can be used to

react to dynamic changes in the topology of the running multitier system.

Denièlou and Yoshida [16] developed a theory for choreographies with homogeneous roles

and dynamic topologies by allowing choreographies to be parametrised (also) in collections of

roles. Plans for supporting for this feature in Choral are discussed in [19, ğ7]. In this extension,

preĄxing a role parameter declaration with *, as in *Clients, speciĄes that this is a collection

of roles. Types are extended with products indexed over collections of role using a syntax

similar to Java for-each blocks. For instance, the type forall(Client: Clients) String@Client

represents a ŞtupleŤ with a String for each role in the collection Clients. We can write a

scatter-gather channel over a star topology (cf. MultiClientServer) as follows:

1 abstract class StarChannel@(Server, *Clients) {

2 forall (Client : Clients) { SymChannel@(Server,Client) } star;

3 forall (Client : Clients) { String@Client } scatter(String@Server m);

4 String@Server gather(forall (Client : Clients) { String@Client } ms);

5 }

ECOOP 2021



22:22 Multiparty Languages: The Choreographic and Multitier Cases

Method gather of StarChannel is then translated to ScalaLociŠs primitive asLocalFromAll

and vice versa. A further extension discussed in [19, ğ7] is the introduction of existential quan-

tiĄcation over roles in role collections. For instance, with(Client: Clients) {String@(Client)}

represents a string at some role in the collection Clients. We can extend the example above

to support any-cast communication as follows:

1 abstract class StarChannel@(Server, *Clients) {

2 /* ... */

3 with (Client : Clients) { String@(Client) } any(String@Server m);

4 String@Server any(with (Client : Clients) { String@(Client) } m);

5 }

Method any of StarChannel is then translated to ScalaLociŠs on(c).run { ... } and vice

versa.

6.1.3 Higher-Order and First-Class Multiparty Programs

We classify Şhigher-orderŤ a multiparty language where multiparty components (objects,

functions) are values that can be passed as arguments.

Choral is higher-order because methods can accept choreographic objects with multiple

roles as parameters. In Choral, Channels are one of the most basic examples of the usage of

the higher-order feature. For example, we can pass a DiChannel as an argument:

1 class MyClass@(A, B){

2 void passValue(DiChannel@(A, B) ch) {

3 ch.com<Integer>(5@B);

4 }

5 }

In the example, the method passValue takes as input the choreographic object DiChannel

and, by invoking its com method, we execute the protocol needed to send the data (5@B)

between the two roles.

ScalaLoci does not support higher-order composition (no multitier objects as values or

dynamic multitier object storage) but at least supports statically-composed modules [47].

The following snippet shows the declaration of a ClientServer multitier module that is

parameterised over a Client and a Server peer. The module uses the monitoring functionality

provided by the Monitoring multitier module, which is parameterised over a Monitor and

a Monitored peer. The Monitoring module is instantiated by mon inside ClientServer. The

ClientServer module identiĄes the Client peer with the Monitored peer and the Server peer

with the Monitor peer and deĄnes their ties accordingly:

1 @multitier trait Monitoring {

2 @peer type Monitor { type Tie <: Single[Monitored] }

3 @peer type Monitored { type Tie <: Single[Monitor] }

4 }

5

6 @multitier object ClientServer {

7 @multitier object mon extends Monitoring

8

9 @peer type Client <: mon.Monitored { type Tie <: Single[mon.Monitor] with Single[Server] }

10 @peer type Server <: mon.Monitor { type Tie <: Single[mon.Monitored] with Single[Client] }

11 }

Porting higher-order composition from choreographic to multitier languages is an interest-

ing challenge, because the way higher-order values are achieved in the former relies heavily

on the objective view of choreographies. Whenever a value is returned in a multitier program,

the subjective view of multitier languages requires that the value is located at a single place.

It is thus unclear how a higher-order extension of multitier programming should be pursued.
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To exemplify the challenge, consider that to return a data structure containing data from

two distinct peers A and B, one of the two peers must act as coordinator and collect data

from the other, e.g., by nesting on[A]{ ... on[B]{ ... }.asLocal }. But this would return

a data structure completely located at A, so it does not solve the problem. Alternatively,

we could add a multitier operator par for running code at different places simultaneously,

e.g., on[A]{ ... } par on[B]{ ... }. The result of this expression could be a multitier pair

containing data at A and B respectively. However, the only way to use this data structure

would be to invoke asLocal on the two elements of the pair from within an on[C] block for

some peer C, which would again centralise control.

6.1.4 Races

In this context, by ŞracesŤ we mean well-behaved and non-deterministic Ąrst-come/Ąrst-served

patterns where two or more roles ŞraceŤ to communicate with a target role Ąrst (and the

loser is handled correctly). We distinguish two prototypical scenarios: races among producers

and races among consumers.

To program a race among multiple producers in ScalaLoci, we can simply retrieve the

values from all remote producers via asLocalFromAll and pick the Ąrst one that becomes

available via Future.firstCompletedOf as shown in the example below:

1 Future.firstCompletedOf(

2 on[Producer].run { generateValue() }.asLocalFromAll map {

3 case (producerPeerInstance, value) => value map { (producerPeerInstance, _) }

4 })

It is not possible to program a race among multiple consumers in ScalaLoci. In general,

consumer races represent unexplored territory for the multitier paradigm.

In Choral, it is possible to implement protocols with races among producers and among

consumers provided their number is statically Ąxed. For instance, below is the type for a

choreography where two producers race to send a message to a consumer:

1 interface ProducerRace@(Producer1, Producer2, Consumer) {

2 Message@Consumer run(Message@Producer1 m1, Message@Producer2 m2);

3 }

The constraint that the number of roles must be statically Ąxed is related to the inability of

Choral to capture dynamic topologies and, as discussed above, is solved by adding collections

of roles to the language. In the case of consumer races, another limitation is that the Choral

type system is not powerful enough express (and enforce) their presence. Consider a situation

where two consumers race to receive a message from a single producer. In Choral, this

protocol can implement the following interface:

1 interface ConsumerRace@(Producer, Consumer1, Consumer2) {

2 BiPair@(Consumer1,Consumer2)<Optional<Message>,Optional<Message>> run(Message@Producer m);

3 }

However, the return type of run does not guarantee that exactly one consumer receives

the message: implementations that deliver the message to both or neither respect the type.

As discussed in [19, ğ7], we can write a precise type if we extend Choral with existential

quantiĄcation over roles (recall the syntax for existentials at the end of Section 6.1.2) as

shown in the example below:

1 interface ConsumerRace@(Producer, Consumer1, Consumer2) {

2 with(C : [Consumer1, Consumer2]) { Message@C } run(Message@Producer m);

3 }
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6.1.5 Fault Tolerance

In ScalaLoci, remote values whose computation or transmission to the local peer instance fail

result in a future that is completed with a failure value. Thus, user code can detect a failed

remote access and decide how to react appropriately by using library APIs. For example,

failed futures can be handled using the typical operators on futures like recover:

on[Client].run { generateValue() }.asLocal recover { case _ => generateOtherValue() }

Similarly, Choral does not commit to speciĄc failure handling mechanisms at the language

level: programmers can implement their own strategies, e.g., returning errors. An API for

channels that is equivalent to the recover library method above could look as follows (from

the point of view of the caller):

chAB.comOrRecover(generateValue(), new OtherValueGenerator@B());

where OtherValueGenerator has a run method equivalent to generateOtherValue(). Similar

observations hold for timeouts.

ScalaLoci offers some APIs to trigger code when communications with peers in network

with dynamic topologies timeout. If dynamic topologies are introduced to Choral, these APIs

will become relevant for choreographies as well. We conjecture that they can be imported in

a similar way to the one sketched above for recovery.

6.1.6 Asynchrony

For the sake of exposition, we presented multiparty programs using communication APIs

as if they were blocking and designed the Mini variants of both Choral and ScalaLoci

as synchronous. ScalaLoci promotes an asynchronous approach: the preferred variant of

accessing remote values via asLocal in ScalaLoci creates a future to account for network delay

and potential communication failure. On the other hand, Choral is agnostic with regards to

communication models: programmers can import libraries of channels or implement their

own. For instance, a communication model similar to ScalaLociŠs asLocal is offered by the

following interface:

1 interface AsyncDiChannel@(Sender, Receiver)<T@X> {

2 <S@Y extends T@Y> Future@Receiver<S> com(Promise@Sender<S> v);

3 }

6.2 Other Multiparty Languages

For the future we envision further cross-fertilisation between multiparty languages, and that

the class of multiparty languages might get larger. We mention a few approaches outside of

choreographic and multitier programming that might contribute to this.

Software architectures [17, 39] are about organising software systems into well-studied

patterns that comprise components and their connections organised in a certain conĄgura-

tion. Architecture description languages (ADL) [30] specify software architectures and the

constraints among the architecture components. Different from choreographic and multitier

programming, ADLs usually speciĄcation languages separate from the implementation. An

exception is ArchJava [1] which support specifying a software architecture and enforcing

its constraints together with the implementation. Regarding cross-fertilisation, ADLs come

equipped with powerful analysis, code synthesis, and runtime-support tools as well as model

checkers, which can be also used in multitier and choreographic scenarios to enforce different

aspects of correctness.
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Partitioned global address space languages (PGAS) [15] are often used in the domain

of high-performance computing. The main abstraction is a global memory address space

where logical partitions are assigned to processes to maximize data locality. X10 [8] features

explicit fork/join operations and provides a sophisticated dependent type system [7] to model

the place (the heap partition) a reference points to. PGAS languages, similar to multitier

and choreographic languages reduce the boundaries between hosts in a distributed system.

7 Conclusion

Choreographic and multitier languages have developed independently, leading to a number

of research achievement carried out within two vibrant but separate research communities [2,

32, 48]. In this paper, we discussed the fundamental nature of the programming paradigms

based on these languages, isolating the core difference between them. We then showed that,

under the cover of syntactic variance, the two approaches are similar enough to be related

and to reason about potential cross-fertilisation. Our observations offer a platform for future

joint work between the respective communities.
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