
Leveraging Hybrid Cloud HPC with

Multitier Reactive Programming

Daniel Sokolowski∗, Jan-Patrick Lehr†, Christian Bischof‡ and Guido Salvaneschi§

∗Reactive Programming Technology, †‡Scientific Computing, §Programming
∗†‡Technical University of Darmstadt, Germany, §University of St. Gallen, Switzerland

{∗sokolowski@cs., †jan-patrick.lehr@, ‡christian.bischof@}tu-darmstadt.de, §guido.salvaneschi@unisg.ch

Abstract—The advent of cloud computing has enabled large-
scale availability of on-demand computing and storage resources.
However, these benefits are not yet at the fingertips of HPC
developers: Typical HPC applications use on-premise computing
resources and rely on static deployment setups, reliable hard-
ware, and rather homogeneous resources. This hinders (partial)
execution in the cloud, even though applications could benefit
from scaling beyond on-premise resources and from the variety
of hardware available in the cloud to speed up execution.

To address this issue, we orchestrate computationally intensive
kernels using a high-level programming language that ensures ad-
vanced optimization and improves execution flexibility—enabling
hybrid cloud/on-premise HPC deployments. Our approach is
based on multitier reactive programming, where distributed code
is defined within the same compilation unit and computations
are placed explicitly using placement types. We adjust placement
based on performance characteristics measured before execution,
apply our approach to a shortest vector problem (SVP) solver
from cryptanalysis, and evaluate it to be effective.

Index Terms—High Performance Computing, Hybrid Cloud
Computing, Multitier Programming, Reactive Programming

I. INTRODUCTION

The rise of cloud computing made large amounts of com-

putational resources available. In contrast to on-premise high-

performance computing (HPC) clusters, cloud resources are

on-demand bookable. They are, however, less reliable, have

a slower network, and less predictable performance. Nonethe-

less, recent studies conclude that HPC applications can benefit

from using the cloud in addition to on-premise clusters [1]–

[4], especially if they are less communication-intensive, e.g.,

embarrassingly parallel or tree-structured. In hybrid cloud/on-

premise (HyCloud-HPC) runs, applications can scale flexibly

and on-demand beyond the limits of on-premise resources.

For efficient HyCloud-HPC execution, implementations

must allow various setups differing in scale and resource mix,

and support setup changes at run-time. Applications have to

combine heterogeneous resources from various environments

with independent resource managers, enabling to scale beyond

on-premise resources, speed up execution, and meet critical

deadlines. Long run times, unknown computational demands,

and resource availability require to dynamically add and

remove resources to/from the execution, allowing to scale

reactively, and tolerate hardware failures. These new flexibility

requirements are also relevant for exascale computing [5].

Most HPC applications fall short of these requirements

because they are implemented for a fixed hardware configura-

tion and, typically, only support static execution setups. Many

applications rely on checkpoint/restart for fault tolerance,

e.g., using the Fault Tolerance Interface [6]. More flexible

approaches are less common, as their use is prohibitively

complex [7]. Also, more flexible constructs in common par-

allelization paradigms like MPI and OpenMP are practically

not used; for MPI see [8]. They maximize efficiency, but force

developers to deal with a lot of low-level details, and make

flexible implementations impractically hard. Prior work on

HyCloud-HPC thus integrates environments at the scheduler

level, e.g., Univa’s Grid Engine [9] as the successor to Sun’s

Grid Engine [10]. Another approach combines resource man-

agement with workflow management [11]. However, these so-

lutions predominantly support static setups. In particular, they

do not allow to easily combine a job’s resources from various

environments and prohibit to change them dynamically, e.g.,

to add cloud resources on-the-fly.

In this paper, we simplify the implementation of flexible, dy-

namically scaling, fault-tolerant HyCloud-HPC applications:

We increase the level of abstraction and use multitier reactive

programming (MRP), which addresses the demands of more

flexible HPC applications, and simplifies their development

drastically. Our approach is inspired by the observation that

PGAS languages [12] share similarities with multitier lan-

guages [13]. The latter have been recently explored in com-

bination with managed runtimes, e.g., Java and Scala, and

reactive abstractions, relieving developers from both manual

memory management and message passing. Hence, we use

MRP for orchestration and native code for compute-intensive

kernels, resulting in flexibility at the higher-level and efficiency

in the kernels. As a result, our approach allows applications to

combine on-premise and cloud resources flexibly. Resources

are added or removed dynamically without a unified scheduler,

integrating various environments and independent resource

management approaches. This enables to scale applications

on-demand beyond on-premise available resources to speed

up their execution. The contributions of this paper are:

• We identify application requirements for HyCloud-HPC

execution, and suggest to meet these with a hybrid imple-

mentation model using multitier reactive programming.

• We propose a 3 step approach for HyCloud-HPC: (1) ker-

nel identification and extraction, (2) high-level topology

and inter-process communication re-implementation us-

ing MRP, and, (3) performance profile based placement.

• We demonstrate our approach with a shortest vector

problem (SVP) solver, a key algorithm for evaluating the

strength of lattice-based quantum-resistant cryptography.

• We evaluate our SVP solver implementation in on-

premise, cloud, and HyCloud-HPC executions, showing

improved flexibility and effectiveness of the approach.

Accordingly, Section II shows that MRP helps in HyCloud-

HPC applications. Section III explains our approach to enable

HPC applications for HyCloud-HPC. Section IV demonstrates

it with a SVP solver, evaluated in Section V. Finally, we

discuss related work (Section VI) and conclude (Section VII).

II. HYBRID CLOUD HPC: A CASE FOR MULTITIER

REACTIVE PROGRAMMING

The hybrid on-premise and cloud execution poses new

requirements to HPC applications:

MPMD Development: MPI aims to simplify inter-process

communication with a model that is especially helpful

in Single Program Multiple Data (SPMD) applications.

For flexible, component-level scalable applications, it is

preferable to encapsulate different parts into multiple

components combined in a Multiple Program Multiple

Data (MPMD) fashion. However, developing separate

programs distributes the control flow and severely in-

creases the complexity.

Asynchronous Control Flow: For efficient use of highly

parallel systems, it is crucial to avoid waiting time.

Therefore, task-based work packaging and asynchronous

communication are essential.

Flexible Execution Setup: Applications must support vari-

ous run-time configuration setups and adaptation during

execution. This is required to add or remove resources for

adaptive scaling on the fly, and to enable fault-tolerance,

as cloud resources are unreliable and may fail at any time.

The complexity of low-level libraries, e.g., MPI, limits

application developers to meet these requirements. We propose

increasing the level of abstraction, identifying that multi-

tier [13] and functional reactive programming [14] abstractions

solve the issues, thus simplifying HyCloud-HPC applications:

Joint MPMD Development: Multitier programming enables

the joint development of distributed systems within one

compilation unit. This makes distributed control flow

explicit and does not break the application logic at net-

work boundaries. The communication code is generated

and injected by the compiler. Multitier modules [15]

allow developers to split-up applications in sensible ways,

retaining joint development and correctness guarantees.

Asynchronous Control Flow: Reactive programming sim-

plifies asynchronous code, accounting for varying execu-

tion times and avoiding unnecessary synchronization, and

it improves code readability and data flow visibility [16].

Explicit Architecture and Reactivity: Multitier abstractions

allow domain-specific architecture definitions, e.g., client-

server, star, ring, etc. Unlike in low-level libraries, the

HyCloud-HPC Application

HPC
Application

Kernel
Identification &
Extraction

Topology & IPC
Implementation
using MRP

Kernels

Application
Topology

Placement &
Execution

Multitier
Program

Perf.
Profiles

Fig. 1: Approach to enable applications for HyCloud-HPC.

topology definitions are embedded into the language and

are checked for correctness at compile-time. Reactive

abstractions are designed to describe behavior based on

change. Together they enable developers to easily imple-

ment mechanisms that react to changes in the program

state, such as new or disrupted process connections.

Recent implementations of multitier reactive abstractions

use managed languages and automated memory management.

Unfortunately, managed languages with virtualization and

garbage collection are usually less performant than optimized

native code. Therefore, we suggest implementing frequently

executed kernels in optimized C or C++ and to orchestrate

them using multitier reactives. We believe this (1) ensures best

performance on a computationally intensive, non-parallelized

or shared-memory parallelized level and (2) benefits from the

convenience, flexibility, and correctness of MRP on the orches-

tration level. The combination enables the implementation of

flexible and fault-tolerant HyCloud-HPC applications.

III. BREAKING CHAINS: FREEING HPC APPLICATIONS

FOR HYCLOUD-HPC EXECUTION

Fig. 1 shows our approach to HyCloud-HPC applications:

Starting from an HPC application, we identify computationally

intensive sections, and extract these as optimized kernels.

Then, we re-implement the application topology, including

all inter-process communication (IPC) using MRP. Finally,

the resulting application is placed onto available resources

guided by the initially obtained performance profiles. We

now describe the three steps in more detail, then provide

background regarding the used technology, before applying

the approach to an SVP solver in Section IV.

a) Kernel Identification and Extraction: We use

PIRA [17] to identify computationally intensive kernels based

on automated performance measurement and profile analysis.

Once the kernel functions are identified, the user, currently

manually, extracts the kernel’s source code. The user inspects

the final generated profile for the call-sites of the identified

kernel functions for the required data. The function bodies are

inspected for side effects, etc. Given this information, the user

can wrap the required code into a single function that is then

to be called through the Java Native Interface (JNI).

b) Architecture and IPC Implementation: We identified

ScalaLoci [18] as a suitable multitier language, as it supports

programming in a high-level language (Scala) in complex

user-defined systems. Moreover, through the integration of

REScala [19], ScalaLoci features multitier reactive pro-

gramming. We propose to isolate each kernel in a separate

program, i.e., a ScalaLoci peer, and invoke extracted kernel

functions via JNI. The communication between peers can

take advantage of reactive signals and event streams. This

offers comparatively easy mechanisms to implement support

for dynamically connecting and disconnecting peers.

c) Peer Placement: For each peer, an executable program

is generated, setting up the network connections in a listener-

connector fashion and executing the peer. They are run using

the available resource managers, e.g., cluster schedulers or

cloud-typical container orchestration platforms. The decision

on which resource to deploy which peer is crucial for perfor-

mance. Kernel efficiency may vary drastically depending on

the resource type. Moreover, placement affects data locality

and observed communication characteristics. HyCloud-HPC

amplifies this challenge due to the vast variety of heteroge-

neous and specialized hardware in the cloud, while on-premise

resources are typically rather homogeneous.

We reuse the performance insights obtained in kernel identi-

fication using PIRA. They should be generated for each avail-

able resource type and a representative set of configurations.

With this, developers manually decide the optimal placement.

In ongoing work, we are developing decentralized place-

ment abstractions. They allow automating placement in a

decentralized fashion, ideal to combine multiple independent

resource management domains like in HyCloud-HPC. We

plan to augment the PIRA performance profiles with run-

time monitoring and support placement adaptation at run-time

(dynamic placement) to continuously optimize performance.

A. Kernel Identification with PIRA

PIRA automates performance measurement and profile

analysis in the build–run–analyze cycle and iteratively adjusts

the performance instrumentation towards the target applica-

tion’s kernels. The tool uses a whole-program call graph for

its analyses, which it builds in a pre-processing step. PIRA

then iteratively performs three stages:

Build: Initially, a vanilla version is built for baseline measure-

ments. Subsequently, Score-P [20] and a custom LLVM-

based instrumentation-plugin is used.

Run: The target application is run with the user-provided

configuration to record profiling data.

Analyze: A low-overhead instrumentation is generated

heuristically based on static source-code features. After

profiling runs, also the obtained timing information is

considered. Short-running functions are filtered, and long-

running functions are expanded in the call graph.

The tool supports two modes for kernel identification:

(1) function run time for a single input data set, or, (2) func-

tion performance models constructed for multiple input data

sets [21]. A function’s run time is evaluated using thresh-

old values, computed based on the application’s profile.

The performance models are constructed empirically using

Extra-P [22], which assumes that applications are bulk-

synchronous.

Listing 1: ScalaLoci example architecture: A ring of Manager

peers, each connected to a set of Worker peers. On Manager

we refer to both neighbors as Manager or as Prev and Next.

1 @peer type Prev <: { type Tie <: Single[Next] }
2 @peer type Next <: { type Tie <: Single[Prev] }
3 @peer type Manager <: Prev with Next {
4 type Tie <: Single[Prev] with Single[Next] with
5 Multiple[Worker] }
6 @peer type Worker <: { type Tie <: Single[Manager] }

B. Multitier Programming with ScalaLoci

ScalaLoci explicitly describes the system architecture by

peers and ties. A peer is a system component to be executed as

an individual process and represented as a type. Connections

between peers are defined by ties and their arities, i.e., op-

tional, single, or multiple, cf. Listing 1. ScalaLoci is suitable

for complex architectures, e.g., hexahedral meshes, as in the

LULESH proxy application [23].

When MPMD systems are developed jointly, data and

functionality have to be assigned to the respective programs.

In ScalaLoci, the types of methods and values are augmented

with a peer type, obtaining placement types, cf. Listing 2.

Placement types tell the compiler how to distribute the ap-

plication across its components. Remote value accesses and

procedure calls are explicit in the syntax, showing which

operations happen locally and which rely on potentially ex-

pensive communication. In addition to standard type checking,

ScalaLoci verifies at compile-time that all remote accesses

are indicated correctly, and adhere to the defined system

architecture and privacy annotations. The communication code

is injected by the compiler accordingly.

Listing 2: ScalaLoci placement example: part (1) and sum (2)

are placed values. sum is only accessible locally; part can be re-

trieved from connected peers. doWork (3–5) and updateSum (6–7)

are methods on worker and manager. Manager calls doWork on

each worker (8). It updates part (4) and calls updateSum on the

manager (5), which obtains and sums up part (7).

1 var part: Int on Worker = placed { 0 }
2 val sum: Int localOn Manager = placed { 0 }
3 def doWork(): Unit on Worker = placed {
4 part = // Some processing returning an integer

5 remote[Manager] call updateSum() }
6 def updateSum(): Unit on Manager = placed {
7 sum = part asLocalFromAll foldLeft(0)(_+_._1) }
8 placed[Manager] { remote[Worker] call doWork() }

Listing 3: Reactives example: part (1) and sum (2–3) are signals.

sum is updated automatically when any part changes. When the

workTick event (4) fires (8), each worker updates its part (5–7).

1 val part: Var[Int] on Worker = placed { Var(0) }
2 val sum: Signal[Int] localOn Manager = placed {
3 Signal { part asLocalFromAll foldLeft(0)(_+_._1) } }
4 val workTick: Evt[Unit] on Manager = placed { Evt[Unit]() }
5 placed[Worker] {
6 workTick asLocal observe {
7 part.set(/* Some processing returning an integer */) } }
8 placed[Manager] { workTick.fire(()) }

C. Reactive Programming with REScala

REScala combines reactive values with an event system.

It provides data types for events and signals. Events allow

imperative change propagation, while signals update them-

selves and automatically propagate their change when one

of their functional dependencies changes. Both abstractions

simplify the implementation of encapsulated and composable

code, with clear data flow visualization [16], [24]. Listing 3

re-implements Listing 2 using REScala reactives.

IV. CASE STUDY: SHORTEST VECTOR PROBLEM SOLVER

To demonstrate our approach, we apply it to a non-

parallelized version of p3Enum [25], a shortest vector prob-

lem (SVP) solver. This code contains all optimizations of

p3Enum, except parallelization, and thus does not (1) process

multiple bases in parallel, and (2) parallelize the enumeration.

SVP is a so far quantum-computer safe problem in lattice

cryptography and searches for the shortest non-zero vector,

given an n-dimensional basis for a D-dimensional lattice.

Burger et al. [25] provide a thorough explanation and propose

p3enum. In a loop, it generates a random basis, sequen-

tially applies two basis reductions (the second with pruning

and early exit), before enumerating a pruned search tree.

It terminates once a vector is found that is shorter than a

predefined length. The algorithm is non-deterministic due to

the random bases and extreme pruning. Thus, it typically

requires multiple trials for a solution. The processing of a

basis is independent, making the program tree-structured and

thus suitable for HyCloud-HPC [2].

A. Kernel Identification and Extraction

We apply PIRA with four iterations, each running the SVP

solver 25 times with a reasonably small problem to identify the

application’s kernels. Manual validation proved four iterations

reasonable. 25 repetitions is a trade-off between accuracy and

time to completion, addressing the random nature of the algo-

rithm. The randomness also requires to run PIRA in the first

mode, i.e., kernel identification based on runtime thresholds.

The model-based kernel identification fails, as randomness

violates Extra-P’s bulk-synchronous algorithm assumption.

PIRA identifies two main kernels for the SVP solver: (1) a

third party library function used with different parameters for

both BKZ basis reductions and (2) the enumeration function,

which performs a tree search and applies the extreme pruning

strategy. Both functions are also manually validated to be the

main contributors to application run time.

We extract and wrap the kernels manually to be callable

via the JNI. The two BKZ reductions are wrapped in two

functions, BKZ1 and BKZ2, that only vary in their parameters.

The enumeration is wrapped as the enum function. Moreover,

we want to reuse the basis randomization and wrap it as ran-

domize function. Passing values via JNI involves serialization,

copy, and de-serialization, and can cause significant run time

overhead for big data structures like the involved matrices.

We implement a matrix data structure that resides in a shared

buffer and thus is directly accessible by Scala and the kernels.

Manager

Strand

BKZ1

randomize BKZ1

print result

BKZ2
BKZ2

Enum
enum

notify comp.fwd. comp.fwd. comp.

notify resultfwd. resultfwd. result
[no SV]

[found SV]

Fig. 2: Overview of the ScalaLoci based SVP solver.

Listing 4: SVP solver architecture: A central Manager is

connected to multiple strands, each subdivided into three peers

BKZ1, BKZ2, and Enum, which wrap the individual kernels.

1 @peer type Manager <: { type Tie <: Multiple[BKZ1] }
2 @peer type BKZ1 <: {
3 type Tie <: Single[Manager] with Single[BKZ2] }
4 @peer type BKZ2 <: {
5 type Tie <: Single[BKZ1] with Single[Enum] }
6 @peer type Enum <: { type Tie <: Single[BKZ2] }

B. Architecture and IPC Implementation

Fig. 2 shows our SVP solver implementation with the

architecture given in Listing 4. For each strand, the manager

generates random bases, which get processed alongside the

strand’s peers. After enumeration, the strand either signals

completion to receive a new basis or provides the found

shortest vector, terminating the entire application.

In HyCloud-HPC, strands need to be able to join and leave

the computation, i.e., connect and disconnect to/from the man-

ager independently. Listing 5 shows all code required for this

flexibility. This allows flexibility to combine independently

scheduled resources on-premise and in the cloud, and ensures

resistance to strands’ fault.

C. Peer Placement

We generate a dockerized program for each peer and use

TCP for communication. We target an on-premise cluster and

AWS Fargate. The performed PIRA measurements indicate

similar kernel performance in both environments.

Listing 5: Flexible task assignment: The assignedTasks signal (1–

5) holds the task assignment state; the number of assigned

tasks per strand. It updates when a strand connects or discon-

nects, and increments when a strand reports a task completion.

startedTasks (6–9) provides each strand an individual event

stream, firing a new task whenever the strand’s assignment

changes. The BKZ1 peer accesses its tasks via asLocal (11) and

provides its results as event stream (10), observed by BKZ2.

1 val assignedTasks: Signal[AssignmentState] on Manager = placed {
2 Events.foldAll(AssignmentState(Map.empty)) { state => Seq(
3 remote[BKZ1].joined >> state.addRemote,
4 remote[BKZ1].left >> state.removeRemote,
5 completedTasks >> state.assignNextTaskForStrand) } }
6 val startedTasks = on[Manager] sbj { strand: Remote[BKZ1] => {
7 assignedTasks.map(_.state.get(strand.hashCode)).changed
8 .map { _.map { taskId =>

9 (strand.hashCode(), taskId, freshTask(/* ... */)) } }.flatten } }
10 val bkz1Results = on[BKZ1] {
11 startedTasks.asLocal.map(task => /* bkz1 */) }

548.1
base joint sep.

0

100

200

300

Run Time [s]

92
base joint sep.

0

20

40

60

Number of Tries
base joint sep.

0

2

4

6

Run Time [s] / Try

(a) Single strand on LB (small config., 10 repetitions).

242
AWSj. LBjoint LBsep.

0

25

50

75

Run Time [s]

164 93
AWSj. LBjoint LBsep.

0

20

40

60

Number of Tries

17.5
AWSj. LBjoint LBsep.

0

2

4

6
max
mean
median
min

Run Time [s] / Try

(b) 10 strands on LB (small config., 10 repetitions).

73887
LB AWS hybrid

0k

10k

20k

30k

Run Time [s]

1130
LB AWS hybrid

0

100

200

300

400

500

Number of Tries

497.8 737.3
LB AWS hybrid

0

100

200

300

Run Time [s] / Try

(c) 20 strands on AWS and LB, and hybrid (big config., 5 repetitions).

Fig. 3: Run time measurements and related number of tries.

The manager peer has to be reachable for every strand.

Therefore, we execute it in the cloud due to network policies.

The pipeline fashion of the strands requires careful placement;

providing dedicated resources to each peer will only saturate

the slowest peer’s resources. This requires more intelligent

placement, e.g., holistic or dynamic placement. A naive al-

ternative is to run all peers of a strand concurrently within a

shared resource. We investigate this and more in the following.

V. PERFORMANCE EVALUATION

We evaluate our implementation on the Lichtenberg HPC

system (LB), equipped with Intel Xeon E5-2680 v3 Proces-

sors, and on AWS Fargate, running the software on AWS EC2.

We test two setups separate and joint, running every strand’s

peers in three separate processes or in a single process within

different threads. The manager is a dedicated process. As the

baseline, we use the non-parallelized version of p3Enum [25].

On LB and AWS we assign one dedicated CPU core and 2 GB

memory1to each process; manager processes on AWS have

2 CPU cores and 4 GB1. We measure two configurations:

small is of dimension 78 and usually solved within minutes,

big is of dimension 100. We do not report a baseline for big

because it timed out after 24 hours in 18 out of 20 LB runs.

We report the minimum, maximum, median, and mean of

the run time and the number of enumerated bases (tries) for

various deployments in Fig. 3. The number of tries varies

drastically due to the program randomness, and so does the run

time, requiring more repetitions for statistically stable results.

We use their quotient for more reliable comparisons.

Fig. 3a shows that our implementation’s performance is

close to the baseline. The slightly reduced run time per try for

1These are the lowest memory assignments possible for the related amounts
of CPU cores at AWS Fargate; our software requires far less.

0

10

20

30

40

0 25 50 75 100Time [s]

AWS
hybrid
LB

Connected Strands

Fig. 4: Connected strands over time for experiments Fig. 3c.

the joint setup is caused by the small share of work performed

by the manager running in a separate process, which for the

baseline is included in the strand’s process. The strand of the

separate setup required triple the resources than in the joint

setup, but its performance is only slightly better due to the

pipeline effect described in Subsection IV-C. The difference

in the joint and separate setup measurements in Fig. 3b also

confirms a significant waste of resources. Accordingly, we

only consider the more efficient joint setup in the following.

Fig. 3b and Fig. 3c confirm that the SVP solver performs

similarly well on AWS compared to LB. However, for the

shorter measurements in Fig. 3b, the performance looks worse.

This effect is mainly caused by the less coordinated startup

of the strands on AWS, causing higher delays between their

startup and joining. This is negligible for the longer measure-

ments in Fig. 3c but is visible in Fig. 4, which shows the

number of connected strands in the first 100 seconds after

startup for the big configuration measurements. LB strands

connect almost simultaneously due to coordinated startup,

while the AWS containers are deployed separately with vary-

ing delays. This confirms the worse predictability regarding

availability and performance of the used commodity cloud

resources compared to on-premise clusters, but also shows that

our HyCloud-HPC approach can leverage these effectively.

In Fig. 3c, we compare longer running measurements on LB

and AWS and join the resources of both environments then

for hybrid measurements. Combining the on-premise cluster

resources and the cloud improves the run time significantly,

underlining our approach’s effectiveness.

VI. RELATED WORK

a) PGAS/APGAS Languages: PGAS is a parallel pro-

gramming model, allowing processes to access data from each

other through abstractions emulating a shared memory space.

Remote access requires special syntax, but communication is

transparent. De Wael et al. [12] classify PGAS languages.

IBM’s X10 [26] distributes arrays over places, partitions of

the global address space. Asynchronous activities encapsulate

processing and data transfer. Chapel [27] has a similar data

distribution model with both data and task parallelism, and

also other distributed data structures than arrays. Fortress [28]

features constructs for explicit and implicit parallelism.

b) Multitier Programming: Multitier languages remove

the separation of code between communicating processes.

Weisenburger et al. [13] provide an overview of existing

solutions. Most approaches focus on the Web and client-server

architecture. In contrast, ML5 [29] and ScalaLoci support

generic software architectures.

VII. CONCLUSION

In this paper, we propose a new hybrid programming model

for HyCloud-HPC applications: orchestrating optimized, na-

tive kernels with multitier reactive programming. We describe

our approach to increase the flexibility of existing HPC appli-

cations, enabling hybrid on-premise and cloud deployments.

We apply the approach to a shortest vector problem solver and

evaluate its performance. We show that MRP is suitable to

efficiently combine on-premise and cloud resources, even al-

lowing us to add resources at run-time dynamically—to speed

up HPC applications and meet critical deadlines flexibly.

ACKNOWLEDGMENTS

This work has been co-funded by the German Research

Foundation (DFG, No. 322196540 and 383964710, SFB 1053

and 1119), by the Hessian LOEWE initiative (emergenCITY

and Software-Factory 4.0), and by the German Federal Min-

istry of Education and Research (BMBF) and the Hessian

Ministry of Higher Education, Research and the Arts (HMKW)

within their joint support of the National Research Center

for Applied Cybersecurity ATHENE. Calculations were per-

formed on the Lichtenberg HPC system at TU Darmstadt.

REFERENCES

[1] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and
R. Buyya, “HPC cloud for scientific and business applications: Taxon-
omy, vision, and research challenges,” ACM Comput. Surv., vol. 51, Jan.
2018.

[2] A. Gupta and D. Milojicic, “Evaluation of HPC applications on cloud,”
in 2011 Sixth Open Cirrus Summit, pp. 22–26, 2011.

[3] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B. Lee,
V. March, D. Milojicic, and C. H. Suen, “Evaluating and improving
the performance and scheduling of hpc applications in cloud,” IEEE

Transactions on Cloud Computing, vol. 4, no. 3, pp. 307–321, 2016.

[4] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case study
for running HPC applications in public clouds,” in Proceedings of the

19th ACM International Symposium on High Performance Distributed

Computing, HPDC ’10, (New York, NY, USA), p. 395–401, Association
for Computing Machinery, 2010.

[5] A. Geist and D. A. Reed, “A survey of high-performance computing
scaling challenges,” The International Journal of High Performance

Computing Applications, vol. 31, no. 1, pp. 104–113, 2017.

[6] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High performance fault tolerance
interface for hybrid systems,” in Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’11, ACM, 2011.

[7] G. Georgakoudis, L. Guo, and I. Laguna, “Reinit++: Evaluating the
performance of global-restart recovery methods for MPI fault tolerance,”
in High Performance Computing (P. Sadayappan, B. L. Chamberlain,
G. Juckeland, and H. Ltaief, eds.), (Cham), pp. 536–554, Springer
International Publishing, 2020.

[8] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and
N. Sultana, “A large-scale study of MPI usage in open-source HPC
applications,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’19,
(New York, NY, USA), Association for Computing Machinery, 2019.

[9] Univa Corporation, “Univa Grid Engine.” https://www.univa.com/
products/univa-grid-engine.php, 2020. [Online; accessed 08/03/2020].

[10] W. Gentzsch, “Sun Grid Engine: towards creating a compute power
grid,” in Proceedings First IEEE/ACM International Symposium on

Cluster Computing and the Grid, pp. 35–36, 2001.

[11] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid computing
– where HPC meets grid and cloud computing,” Future Generation

Computer Systems, vol. 27, no. 5, pp. 440 – 453, 2011.

[12] M. De Wael, S. Marr, B. De Fraine, T. Van Cutsem, and W. De Meuter,
“Partitioned global address space languages,” ACM Comput. Surv.,
vol. 47, pp. 62:1–62:27, May 2015.

[13] P. Weisenburger, J. Wirth, and G. Salvaneschi, “A survey of multitier
programming,” ACM Comput. Surv.

[14] C. Elliott and P. Hudak, “Functional reactive animation,” in Proceedings

of the Second ACM SIGPLAN International Conference on Functional

Programming, ICFP ’97, (New York, NY, USA), p. 263–273, Associa-
tion for Computing Machinery, 1997.

[15] P. Weisenburger and G. Salvaneschi, “Multitier modules,” in 33rd

European Conference on Object-Oriented Programming (ECOOP 2019)

(A. F. Donaldson, ed.), vol. 134 of Leibniz International Proceedings

in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 3:1–3:29, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[16] G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini, “On the
positive effect of reactive programming on software comprehension: An
empirical study,” IEEE Transactions on Software Engineering, vol. 43,
no. 12, pp. 1125–1143, 2017.

[17] J.-P. Lehr, A. Hück, and C. Bischof, “PIRA: Performance instrumenta-
tion refinement automation,” in Proceedings of the 5th ACM SIGPLAN

International Workshop on Artificial Intelligence and Empirical Methods

for Software Engineering and Parallel Computing Systems, AI-SEPS
2018, (New York, NY, USA), p. 1–10, Association for Computing
Machinery, 2018.

[18] P. Weisenburger, M. Köhler, and G. Salvaneschi, “Distributed system
development with ScalaLoci,” Proc. ACM Program. Lang., vol. 2, Oct.
2018.

[19] G. Salvaneschi, G. Hintz, and M. Mezini, “REScala: Bridging be-
tween object-oriented and functional style in reactive applications,”
in Proceedings of the 13th International Conference on Modularity,
MODULARITY ’14, (New York, NY, USA), p. 25–36, Association for
Computing Machinery, 2014.

[20] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf, “Score-P: A joint per-
formance measurement run-time infrastructure for Periscope, Scalasca,
TAU, and Vampir,” in Tools for High Performance Computing 2011,
(Berlin, Heidelberg), pp. 79–91, Springer Berlin Heidelberg, 2012.

[21] J.-P. Lehr, A. Calotoiu, C. Bischof, and F. Wolf, “Automatic instru-
mentation refinement for empirical performance modeling,” in 2019

IEEE/ACM International Workshop on Programming and Performance

Visualization Tools (ProTools), pp. 40–47, 2019.
[22] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated

performance modeling to find scalability bugs in complex codes,” in
Proc. of the ACM/IEEE Conference on Supercomputing (SC13), Denver,

CO, USA, pp. 1–12, ACM, November 2013.
[23] D. Sokolowski, P. Martens, and G. Salvaneschi, “Multitier reactive pro-

gramming in high performance computing.” 6th Workshop on Reactive
and Event-based Languages & Systems, 2019.

[24] G. Salvaneschi and M. Mezini, “Debugging for reactive programming,”
in Proceedings of the 38th International Conference on Software Engi-

neering, ICSE ’16, (New York, NY, USA), p. 796–807, Association for
Computing Machinery, 2016.

[25] M. Burger, C. Bischof, and J. Krämer, “p3Enum: A new parameterizable
and shared-memory parallelized shortest vector problem solver,” in
Computational Science – ICCS 2019, (Cham), pp. 535–542, Springer
International Publishing, 2019.

[26] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” SIGPLAN Not., vol. 40,
pp. 519–538, Oct. 2005.

[27] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the Chapel language,” Int. J. High Perform. Comput. Appl., vol. 21,
pp. 291–312, Aug. 2007.

[28] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele, and S. Tobin-Hochstadt, “The Fortress Language Specifi-
cation,” tech. rep., Sun Microsystems, Inc., March 2008. Version 1.0.

[29] T. Murphy, VII., K. Crary, and R. Harper, “Type-safe distributed
programming with ML5,” in Proceedings of the 3rd Conference on Trust-

worthy Global Computing, TGC ’07, (Berlin, Heidelberg), Springer-
Verlag, 2008.

https://www.univa.com/products/univa-grid-engine.php
https://www.univa.com/products/univa-grid-engine.php

