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Abstract Multitier programming languages reduce the complexity of developing distributed software by

developing the distributed system within a single coherent code base. In multitier languages, the compiler

or the runtime takes care of separating the code into the components of the distributed system. This ap-

proach enables abstraction over low level implementation details such as data representation, serialization

and network protocols. The ScalaLoci programming language allows developers to declare the components

of the system and their architectural relation at the type level, enabling static reasoning about distribution

and remote communication and guaranteeing static type safety for data transfer across components. As the

compiler automatically generates the communication boilerplate among components, data transfer among

components can be modeled declaratively, by specifying the data flows in the reactive programming style.

In this paper, we report on the ScalaLoci implementation and on our experience with embedding ScalaLoci’s
language features into Scala as a host language. We show how a combination of Scala’s advanced type level

programming and of Scala’s macro system enable enriching the language with new abstractions for distributed

systems. We describe the challenges we encountered for the implementation and report on the solutions we

developed. Finally, we outline suggestions for improving the Scala macro system to better support embedding

domain-specific abstractions.
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Implementing a Language for Distributed Systems

1 Introduction

Developing distributed systems adds significant complexity over programming local

applications. Many issues that arise in the distributed setting are not specifically

supported by existing programming languages, including, for example, consistency,

availability through data replication, and fault tolerance. More generally, widely

used languages provide poor abstractions for distribution, either (i) making distribu-

tion completely transparent (e.g., distributed shared memory [38]), (ii) providing a

high-level programming model only for a specific domain, such as big data or stream-

ing systems [16, 62, 10] or (iii) being general purpose but providing only low-level

communication primitives, such as message passing in the actor model [1]. Multitier

(sometimes called tierless) languages provide a holistic view on the distributed ap-

plication, mixing functionalities belonging to different tiers (e.g., the client and the

server) within the same compilation unit [14, 53]. The ScalaLoci1 [60, 61] multitier

language supports (i) declaratively specifying the distributed components and their

architectural relation and (ii) placing values on the specified components. Remote

communication is statically checked for architectural conformance and type safety.

In this paper, we present the implementation of ScalaLoci. We provide insights into

our approach of embedding ScalaLoci abstractions as a domain-specific language into

Scala and describe our experiences with using Scala’s type level programming features

and Scala’s macro system to perform extensive AST transformations. To the best of

our knowledge, the ScalaLoci project accounts for the most extensive use of Scala

macros to date (with 5.5 K lines of code for macro expansion, compared to ∼ 3.5 K

for Scala Spores mobile closures [34] and the ScalaTest [59] testing framework, ∼ 2 K

for Scala Async asynchronous programming abstractions [21], ∼ 2 K for the shapless

generic programming library [48], and ∼ 1 K for the circe JSON library [6]). Our work

on ScalaLoci is also an experiment on Scala’s expressiveness in terms of type level

programming, macro programming and syntactic flexibility. In summary, this paper

makes the following contributions:

We provide an overview of the ScalaLoci design requirements and of the ScalaLoci
implementation.

We show how the ScalaLoci design is embedded into Scala and how ScalaLoci’s
domain-specific abstractions are translated into plain Scala with a combination of

type level and macro programming.

We present the design of our network communication runtime which hides the

implementation details of different underlying network protocols and the semantics

of accessing values of different types.

Section 2 lays out the design space and gives a high-level introduction to the ScalaLoci
language. Section 3 provides an overview of the ScalaLoci implementation. Section 4

presents the type level encoding of the language constructs. Section 5 reports on our

macro-based code splitting implementation. Section 6 describes the communication

runtime. Section 7 discusses related work. Section 8 concludes.

1 http://scala-loci.github.io
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2 Design Approach of ScalaLoci

The design of ScalaLoci unfolds around three major ideas. First, the distributed topol-

ogy (i.e., separate locations that execute code) is explicit and specified by the program-

mer, who assigns code to each system component. Second, remote communication

within the distributed system (i.e., with performance and failure characteristics dif-

ferent from local communication) is explicit and supports event-based interaction

between components. Third, ScalaLoci abstractions are embedded as domain-specific

features into an existing general purpose language. We lay out the design space for

our language implementation and derive concrete design requirements.

Explicit Specification of Distribution and Topology Some languages for distributed

systems abstract over the topology, i.e., code is agnostic to the system’s components and

their connections. Such approach is often chosen for highly specialized programming

models, e.g., streaming systems [16, 62], intentionally hiding distribution. On the other

end lie approaches where developers specify the topology. Distribution unavoidably

becomes apparent when implementing different components, e.g., in actor systems [1].

While actor systems encapsulate components into actors, topological information is

not encoded at the language level but managed explicitly by the developer.

Clearly, a multitier programming model for developing generic distributed systems

– similar to what the actor model offers – cannot abstract over distribution completely.

To decide on the component that executes a specific part of the code, the compiler

or the runtime may determine the location automatically by splitting code, i.e., the

developer gives up control over where code is executed. Alternatively, developers can

annotate parts of the code with the location where it should be executed.

We decided for an annotation-based approach that gives the developer full control

over the distribution, making locations explicit in the language. We think that it

is essential for the developer to restrict the locations where code is executed for

comprehending the system’s behavior, e.g., regarding performance or privacy. Mixing

automatic and explicit placement of values remains to be explored further.

Encoding the topology statically allows for providing static guarantees, such as

that remote communication adheres to the topology and is statically type-checked.

Thus, we (i) make location annotations part of a value’s type and (ii) encode the

topology specification at the type level, which allows the compiler to check correctness

of remote accesses and ensures type safety across distributed components.

Explicit RemoteAccess andEvent-basedCommunication Communication in distributed

systems often follows a message passing approach (such as in actor systems). Message

passing mechanisms, however, are quite low level with explicit send and receive opera-

tions [20], which disrupt control flow between a sending and a receiving side. Further,

message loops often need to pattern-match on received messages since messages are

essentially untyped. Instead, we favor strongly typed communication mechanisms.

Message passing semantics is close to sending packets over the network whereas

communication mechanisms like remote procedure calls are closer to abstractions

commonly found in high-level languages. For remote procedures, however, it is impor-
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tant to consider the inherent differences between remote calls and local calls [26]. In

contrast to local calls, remote calls need to account for network latency and potential

communication failures. For this reason, in our design, remote calls return a value that

represents an asynchronous computation which may potentially fail (e.g., a future).

Further, distributed applications are often event-based [11, 31]. For example, web

clients send events to the server to trigger computations or cause a change to persistent

storage. Servers send events to reflect such changes on the clients. Hence, we support

specifying data flow in a declarative way using reactive programming features [51, 49].

Embedding There is a trade-off between designing a new language from scratch,

which provides the greatest amount of flexibility, and embedding new abstractions into

an existing language, which restricts the design space since the host language dictates

the underlying feature set and available syntax. On the other hand, embeddings

enable leveraging existing libraries and tooling.

We decided to embed our abstractions into Scala for its powerful type system, which

can encode the topology specification and the placement of values. Our approach

retains compatibility with plain Scala and preserves access to the Scala (and Scala.js)

ecosystem. We exclusively use syntactically valid and type-correct Scala, allowing for

expressing the placement of values in their types. The special semantics of placed

values is implemented by a compile-time transformation based on macro expansion.

2.1 Design Requirements

From the design considerations above, we derive the following principles to guide our

language implementation:

#1 Support different architectural models Distributed systems exhibit different archi-

tectures. Besides common schemes like client–server or a peer-to-peer, developers

should be able to freely define the distributed architecture declaratively (section 4).

#2 Make remote communication direct and explicit The programmer should be able to

execute a remote access by directly accessing values placed on a remote peer.

Although remote communication boilerplate code should be reduced to a minimum,

remote access should still be syntactically noticeable since it entails potentially

costly network communication (section 4.1).

#3 Provide static guarantees The language should provide static guarantees whenever

possible to catch errors preferably already at compile-time. In particular, access to

remote values should be statically checked to conform to the specified distributed

architecture and to provide type safety across distributed components (section 4.2).

#4 Support declarative cross-host data flows The language should support abstrac-

tions for reactive programming for specifying data flows across hosts since dis-

tributed applications are often reactive in nature (section 6).

#5 Make abstractions for distribution integrate with existing code The new language

abstractions for distributed programming should be orthogonal to present lan-

guage abstractions and integrate properly with existing code. Embedding our

abstractions into a host language fosters reusability of existing code (section 5).
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2.2 ScalaLoci in Nuce

The ScalaLocimultitier language supports generic distributed architectures. Developers

can freely define the different components, called peers, of the distributed system

and their architectural relation. The application-level network topology in ScalaLoci
is encoded at the type level. Peers are defined in Scala as abstract type members:

1 @peer type Registry
2 @peer type Node

In Scala, traits, classes and objects can define type members, which are either ab-

stract (e.g., type T) or define concrete type aliases (e.g., type T = Int). Abstract types can
define lower and upper type bounds (e.g., type T >: LowerBound <: UpperBound), which

refine the type while keeping it abstract. We use peer types only as phantom types [12]

to keep track of placement at the type level. Hence, they are never instantiated and,

thus, are defined abstract. We use Scala annotations (i.e., @peer) to distinguish peer

types from other type member definitions.

We further use peer types to express the architectural relation between the different

peers by specifying ties between peers. Ties statically approximate the run time

connections between peers. For example, a tie from a Registry peer to a Node peer

defines that, at run time, Registry instances can connect to Node instances. To give

remote accesses useful static types, ties differentiate between different multiplicities.

A single tie expresses the expectation that a single remote instance is always accessible.

When accessing a remote value over single tie, the single value is transmitted to the

local instance. An optional tie allows at most one remote instance to be connected

and remote access locally creates a value of an option type. A multiple tie allows an

arbitrary number of connected remote instances and remote access locally creates a

sequence containing the remote values for all connected instances.

Remote access is statically checked against the architectural scheme specified

through ties. Hence, ties are also encoded at the type level such that that compiler

can check that the code conforms to the specified architecture. Ties are defined by

specifying a type refinement for peer types that declares a Tie type member:

1 @peer type Registry <: { type Tie <: Multiple[Node] }
2 @peer type Node <: { type Tie <: Single[Registry] with Multiple[Node] }

The type refinement { type Tie <: Multiple[Node] } specified as upper bound for Registry
states that Registry is a subtype of a type that structurally contains the definition of

the Tie type member type Tie <: Multiple[Node]. The tie specification above defines (i) a

multiple tie from the Registry to the Node peer, i.e., the registry can connect to multiple

nodes, and (ii) a single tie from the Node to the Registry peer as well as a multiple tie

from the Node to the Node peer, i.e., a node always connects to a single registry and

can connect to multiple other nodes.

Having defined the components and their architectural relation using peer types,

developers can place values on the different peers through placement types [60]. The
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placement type T on P2 represents a value of type T on a peer P. Placed values are

initialized by placed { e } expressions. The snippet places an integer on the registry:

1 val i: Int on Registry = placed { 42 }

Accessing remote values requires the asLocal marker, creating a local representation

of the remote value by transmitting it over the network:

1 val j: Future[Int] on Node = placed { i.asLocal }

Calling i.asLocal returns a future of type Future[Int], accounting for network delay

and potential communication failure. Futures – which are part of Scala’s standard

library – represent values that will become available in the future or produce an error.

ScalaLoci multitier code resides in multitier modules, i.e., in classes, traits or objects

that carry the @multitier annotation. Multitier modules can be combined using Scala’s

mixin composition on traits or by referencing instances of multitier modules [61].

Considering the following architecture specification for a module which provides a

peer that monitors other peers (e.g., using a heartbeat mechanism):

1 @multitier trait Monitoring {
2 @peer type Monitor <: { type Tie <: Multiple[Monitored] }
3 @peer type Monitored <: { type Tie <: Single[Monitor] }
4 // ...
5 }

The following module reuses the monitoring functionality by defining an object
extending the Monitoring trait to instantiate the Monitoring module (line 2):

1 @multitier trait P2P {
2 @multitier object mon extends Monitoring
3
4 @peer type Registry <: mon.Monitor {
5 type Tie <: Multiple[mon.Monitored] with Multiple[Node] }
6 @peer type Node <: mon.Monitored {
7 type Tie <: Single[mon.Monitor] with Single[Registry] with Multiple[Node] }
8 // ...
9 }

The P2P module defines the Registry peer to be a special Monitor peer (line 4) and

the Node peer to be a special Monitored peer (line 6) by declaring a subtype relation

(e.g., Registry <: mon.Monitor) to map the architecture of the Monitoring module to the

architecture of the P2P module, reusing the monitoring functionality. Refining the

upper bound of a peer type enables specializing a peer as (a subtype of) another peer,

enabling peer composition by combining super peers into a sub-peer. By defining

that a Registry peer is a Monitor peer, all values placed on Monitor are also available

on Registry. We use the path-dependent type mon.Monitor to refer to the Monitor peer
of the multitier module instance mon. Scala types can be dependent on an path (of

objects). Hence, we can distinguish between the peer types of different multitier

module instances, i.e., the type members defined in different Scala objects.

2 T on P is infix notation for the parameterized type on[T, P].
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Figure 1 Implementation Overview

3 Overview of the ScalaLoci Architecture

Figure 1 provides an overview of the ScalaLoci implementation, which is organized into

two projects. The communication project (section 6) handles network communication

for the generated peer-specific code of the multitier program. The project is divided

into three packages that provide interfaces for type-safe remote communication over

different network protocols. The remote communication mechanisms are not hard-

wired into our implementation and can be extended by implementing the interfaces

for (i) message passing over different underlying network protocols (communicators),

(ii) different data serialization schemes (serializers) and (iii) different transmission

semantics (transmitters), e.g., pull-based remote procedure calls and push-based

event streams. We implemented support for different network protocols (e.g., TCP

and WebSocket), serializers (e.g., using µPickle [27] or circe [5] for serialization to

JSON) and reactive systems (e.g., REScala [50] and Rx [32]). Developers can plug in

such implementations as needed for configuring remote communication.

The language project provides the runtime package implementing the peer instance

life cycle of starting and stopping peers and dispatching remote accesses using the

communication backend. The language package contains the encoding of our domain-

specific abstractions into Scala and the Scala type system (section 4). The language.impl
package implements the macro-based code generation (section 5).

3.1 Cross-Platform Compilation

We support both the standard Scala compiler emitting Java bytecode and the compi-

lation to JavaScript using the Scala.js compiler. Since there exist libraries which are

available only for the JVM or only for JS, multitier modules can mix JVM-only and

JS-only libraries if some peers are supposed to run on the JVM and some on a JS virtual

machine. Our approach requires a multitier module to be compiled once for every

platform, on which one of its peers runs. While the implementation of some libraries

may not be available to all platforms, the typing information of their definitions is,

i.e., the JS compiler can type-check code even if it refers to JVM-only libraries and

vice versa. After type-checking and splitting the code, Scala.js’ dead code elimination

removes all references to JVM libraries, which are not invoked from JavaScript.
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4 Type Level Encoding

ScalaLoci features the specification of the distributed architecture at the type level

by defining (i) the different components as peers and (ii) the topology in which

peers are arranged as ties (cf. design principle #1). The encoding solely relies on a

combination of standard Scala features (Scala annotations, abstract type members and

type refinements). For a peer definition@peer type Registry <: { type Tie <: Multiple[Node] },
we use valid Scala code instead of deviating more radically from the Scala syntax

to provide a more uncluttered definition (e.g., peer Registry ties Multiple[Node]). Using
standard Scala allows developers to define peers in a syntax with which they are

familiar, keeping the appearance of the host language for the domain-specific aspects.

Values can be placed on the components defined in the architecture specification and

remote access to such values is statically checked by the compiler.

4.1 Lexical Context

The example in section 2.2 defines an integer value on the registry and a remote access

to the value on the node using asLocal. Requiring the asLocal syntactic marker makes

remote access explicit (cf. design principle #2):

1 val i: Int on Registry = placed { 42 }
2 val j: Future[Int] on Node = placed { i.asLocal }

Calling i.asLocal returns a future of type Future[Int]. We know from the tie specification

that there is a single tie from Node to Registry. Thus, asLocal returns a single future. For

an optional tie, the asLocal call would return an optional future of type Option[Future[Int]].
For a multiple tie, asLocal would return a sequence of futures.

The example demonstrates the interplay of placement types, peer types and ties

when type-checking code (cf. design principle #3). Since the remote access i.asLocal
happens on the Node peer, the value i is placed on the Registry peer and Node defines a
single tie to Registry, the type system can infer the type of i.asLocal to be Future[Int].

When type-checking the asLocal call, it is necessary to determine on which peer the

call is invoked. For instance, the exact same invocation on the registry peer does not

type-check since there is no tie from the Registry to the Registry:

1 val j: Future[Int] on Registry = placed { i.asLocal } // ✗ compilation error

Thus, typing remote accesses depends on their lexical context. Context information

in Scala can be propagated implicitly using implicit values as arguments. The placed
expression desugars to a function that takes an implicit argument for the peer context:

1 val j: Future[Int] on Node = placed { implicit ctx: Placement.Context[Node] => i.asLocal }

When type-checking the i.asLocal expression, the compiler resolves a value of type

Placement.Context from the implicit scope, thereby inferring its type parameter which

statically captures the peer context. Using implicit functions to propagate context is a

common pattern in Scala. Language support for contextual abstractions [39] will be

part of Scala 3, allowing for syntactically more lightweight context propagation by omit-

ting the definition of the implicit argument (i.e., implicit ctx: Placement.Context[Node]).
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Building on Scala 2, which does not support such abstractions yet, we use Scala’s

macro system to synthesize implicit arguments before type-checking (section 5.4).

4.2 Distributed Architecture

Type-checking remote accesses heavily relies on Scala’s type level programming

features involving implicit resolution. The interface for accessing a remote value can

be freely defined using an implicit class, a mechanism to define extension methods

for an already defined type. The following code shows the declaration of the asLocal
method used in the previous examples for placed values of type V on R accessed from

a local peer L resulting in a local value T for single ties:

1 implicit class BasicSingleAccessor[V, R, T, L](value: V on R)(
2 implicit ev: Transmission[V, R, T, L, Single]) {
3 def asLocal: T = // ...
4 }

The implementation requires an implicit value of type Transmission (line 2). The

implicit Transmission value again requires implicit resolution for several values to

resolve (i) the current peer context as parameter L, (ii) the tie multiplicity from L to R
and (iii) the type of the local representation of V as parameter T.
The resolution for the current peer context L requires an implicit argument of

type Placement.Context[L] (section 4.1). After resolving the current peer context L – and

knowing the peer R on which the accessed value is placed by its type V on R – the tie

from L to R can be resolved using the following scheme:

1 sealed trait Tie[L, R, M]
2
3 sealed trait TieMultiple { /* ... */ }
4
5 sealed trait TieOptional extends TieMultiple { /* ... */ }
6
7 sealed trait TieSingle extends TieOptional {
8 implicit def single[L, R](
9 implicit ev: L <:< Any { type Tie <: Single[R] }): Tie[L, R, Tie.Single]
10 }
11
12 object Tie extends TieSingle {
13 type Single
14 type Optional
15 type Multiple
16 }

The single method (line 8) resolves a Tie[L, R, Tie.Single] specifying a single tie from L
to R. The method implicitly requires a generalized type constraint <:< (line 9) which the

compiler resolves if L is a subtype of Any { type Tie <: Single[R] }, i.e., if the current peer

has a Tie that is a subtype of Single[R]. The resolution for optional and multiple ties

is defined analogously (lines 3 and 5) – left out for brevity. Letting TieSingle inherit
from TieOptional and TieOptional from TieMultiple prioritizes the resolution of single ties

over optional ties over multiple ties. If no tie can be resolved, peer L is not tied to peer
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R and remote access is not possible. It is necessary to find suitable formulation for

determining ties that can be resolved by the Scala compiler since type inference is not

specified and implicit search is not guaranteed to be complete. In practice, finding

such an encoding requires trying out different formulations.

The type of the local representation T usually resolves to Future[V], wrapping the

accessed value into a future to take network transmission into account. Depending on

the concrete data type T, other local representations that are more appropriate may

be defined. For example, a remote event stream Event[T] can be locally represented

simply as an Event[T] (instead of a Future[Event[T]]), which starts propagating events

upon remote access. Based on the type, the compiler resolves a suitable transmission

mechanism from the implicit scope. The resolved transmission mechanism connects

the language level to the communication runtime (section 6).

In a similar way, variants of asLocal for optional and multiple ties return an optional

value and a sequence, respectively. Note that we call the asLocal variant for accessing
remote values on a multiple tie asLocalFromAll to make the cost of accessing potentially

multiple remote instances visible:

1 implicit class BasicOptionalAccessor[V, R, T, L](value: V on R)(
2 implicit ev: Transmission[V, R, T, L, Optional]) {
3 def asLocal: Option[T] = // ...
4 }
5
6 implicit class BasicMultipleAccessor[V, R, T, L](value: V on R)(
7 implicit ev: Transmission[V, R, T, L, Multiple]) {
8 def asLocalFromAll: Seq[(Remote[R], T)] = // ...
9 }

Encoding the distributed architecture at the type level enables leveraging Scala’s

expressive type level programming features to type-check remote access based on the

type of the accessed value and the architectural relation between the accessing and

the accessed peer, guaranteeing static type safety across components.

4.3 Lessons Learned

The type level encoding currently adopted in ScalaLoci is a revised version based on

our experiences with our prior implementation. Initially, we defined placement types

T on P as trait on[T, P]. Depending on the implicit peer context, our implementation pro-

vided an implicit conversion T on P => T for local access and T on P => BasicSingleAccessor
for remote access on a single tie (analogously for optional and multiple ties). We

(i) introduced the approach using implicit classes (section 4.2) instead of using an

implicit conversion for remote access and (ii) defined placed types as type alias

type on[T, P] = Placed[T, P] with T, i.e., local access does not require an implicit conversion

since the compound type directly entails the local representation T (and a placement

marker Placed[T, P]). We decided to remove the need for implicit conversions from

our encoding since implicit conversions are only applied if the compiler can infer

the target type of the conversion and the compiler does not chain different implicit

conversions automatically. Further, reducing the amount of required implicit search
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improves compile times. The downside of the revised encoding is that a placed value

can always be accessed as a local value – even if it is placed on a remote peer. We can,

however, reject such illegal access using a check during macro expansion.

Our domain-specific embedding into Scala is designed to type-check valid programs.

For rejecting all invalid programs, we employ additional checks when inspecting the

typed AST during macro expansion. Over-approximating type correctness in the type

level encoding simplifies the encoding. Such approach is especially beneficial when

the checks in the macro code are cheaper in terms of compilation performance than

Scala’s implicit resolution mechanism, which is the case for our approach.

By moving correctness checks to macro code, we reduced the code for the type level

encoding from ∼ 600 lines of code in our initial implementation to ∼ 250 lines of code.

Issuing compiler errors from macro code also helps in improving error diagnostics

since macro code can inspect the AST to give helpful error messages. Debugging

compilation issues due to failing implicit resolution, on the other hand, is difficult

because the compiler lacks the necessary domain knowledge to hint at which implicit

value should have been resolved, resulting in imprecise error messages.

For our purpose of encoding peer and placement types, the key feature of the host

language is an expressive type system. Our embedding is based on Scala’s unique

combination of type system features, namely abstract type members, type refinements,

subtyping and path-dependent types. Scala’s syntactic flexibility (e.g., writing T on P
instead of on[T, P]) enables an embedding that sorts well with both the host language

and the domain-specific abstractions. We conjecture that a similar encoding is possible

in languages with similarly expressive type level programming features – of course

relying on the type system features of the host language, which might differ from the

Scala features which we use. A Haskell implementation, for example, would neither

have to support subtyping, nor could it use such type system feature for the encoding.

Any domain-specific embedding always compromises between the domain language

and host language characteristics to foster easy integration of orthogonal language

features of an existing general purpose language and enabling reuse of existing code.

5 Macro Expansion

Compiling multitier programs requires splitting the code into deployable components.

In ScalaLoci, peer types define the set of components and placement types of value

definitions indicate the components to which the values belong. We use Scala macro

annotations to split the code by transforming the AST of a multitier module. Scala

macro annotations only expand locally, i.e., they only allow the transformation of the

annotated class, trait or object. By local expansion, we retain the same support for

separate compilation that Scala offers, enabling modular development of multitier

applications. Inside every multitier module (i.e., the annotated class, trait or object),

we create a nested trait for every peer type which contains the values placed on the

peer. This process automatically conflates the values placed on the same peer without

requiring the developer to do so manually, disentangling language-level support for

modularization form distribution concerns.
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To the best of our knowledge, our approach to code splitting is the most extensive

use of Scala macros to date, amounting to ∼ 5.5 K lines of code. Our implementa-

tion confirms that macro-based code generation is a powerful tool for embedding

domain-specific abstractions into Scala using compile-time metaprogramming. Cru-

cially, macros run as part of the Scala compiler and have access to type information of

the AST, which is important for our use case of splitting code based on peer types.

Scala supports macros in two different flavors, def macros expanding expressions and

macro annotations expanding declarations of classes, traits, objects or members. Hence,

to mark a class, trait or object as multitier module, we rely on macro annotations. In

contrast to def macros, which expand typed ASTs, macro annotations expand untyped

ASTs. AST transformation before type-checking is considered too powerful since it may

change Scala’s language semantics significantly [8]. In spirit of keeping our semantics

as close as possible to plain Scala, multitier code is syntactically valid and type-correct

Scala. Hence, before performing the splitting transformation, we invoke the Scala

type checker to obtain a typed AST of the multitier module. Manually invoking the

type checker is quite delicate in Scala’s current macro system (section 5.5).

Our approach allows accessing libraries from the Java, Scala and Scala.js ecosystems

from multitier code (cf. design principle #5), even using mixed Scala/Scala.js multitier

modules (section 3.1).

5.1 Macros Architecture

Figure 2 provides an overview of the overall architecture of our macro implementation.

The Multitier object (at the top) defines the entry point for the macro expansion that is

invoked by the Scala compiler to expand @multitier macro annotations. The compiler

passes the AST of the annotated module to the macro expansion and retrieves the

transformed AST as result. We first run a sequence of preprocessing steps (left side)

on the untyped AST, compensating for the lack of contextual abstractions in current

Scala (cf. section 5.4). Second, we load a set of components (right side) that constitute

the actual code generation. Every component defines potentially multiple processing

phases, which specify constraints on whether they should run before/after other

phases. All phases run sequentially (satisfying their constraints) to transform certain

aspects of the AST. A phase involves one or more AST traversals. So far, we did not

optimize the code for minimizing traversals to increase compilation performance.

The processing pipeline first splits the multitier module into its top-level definitions

(i.e., the members of the annotated class, trait or object), containing the respective

sub-AST together with meta information, such as the peer on which a value is placed

extracted from its type. The following phases work on this set of definitions. Instead

of using a fully-fledged own intermediate representation, we use standard Scala ASTs

enriched with additional information, which proved effective for our use case. The

final phase assembles the AST of the complete expanded multitier module.

The largest part of the code base deals with the splitting of placed values (Values com-

ponent, section 5.2) and the rewriting of remote accesses from direct style via asLocal
into calls into the communication backed (RemoteAccess component, section 5.3),

which accounts to almost 2 K lines of code.
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Figure 2 Software Architecture of the Macro Expansion

5.2 Code Splitting Process

The code generation process splits the code according to the placement type of

values and creates the necessary run time information for dispatching remote accesses

correctly. We consider the following multitier module, which simply defines a single

peer MyPeer and a single value i placed on MyPeer:

1 @multitier trait SimpleModule {
2 @peer type MyPeer <: { type Tie <: Single[MyPeer] }
3 val i: Int on MyPeer = placed { 1 }
4 }

The macro generates signature values to uniquely identify the multiter module and

the peer types it defines and creates a runtime representation of the tie specification:

1 @MultitierModule trait SimpleModule { /* ... */
2 lazy protected val $loci$mod = "SimpleModule"
3 lazy protected val $loci$sig = Module.Signature($loci$mod)
4 lazy val $loci$peer$sig$MyPeer = Peer.Signature("MyPeer", $loci$sig)
5 val $loci$peer$ties$MyPeer = Map($loci$peer$sig$MyPeer -> Peer.Tie.Single)
6 }

The signatures and tie specification are used when setting up connections between

peer instances at run time to ensure that the connections conform to the static tie
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constraints. Further, a Marshallable instance – for marshalling and unmarshalling values

for network transmission – and a signature for every value is created:

1 @MultitierModule trait SimpleModule { /* ... */
2 @MarshallableInfo[Int](0xD89CCAED)
3 final protected val $loci$mar$SimpleModule$0 = Marshallable[Int]
4
5 @PlacedValueInfo("i:scala.Int", null, $loci$mar$SimpleModule$0)
6 final val $loci$val$SimpleModule$0 = new PlacedValue[Unit, Future[Int]](
7 Value.Signature("i:scala.Int", $loci$mod, $loci$sig.path),
8 Marshallables.unit, $loci$mar$SimpleModule$0)
9 }

Line 3 resolves a Marshallable instance using Scala’s implicit resolution, i.e., it is

guaranteed at compile-time that a value is serializable and can be accessed over the

network. Line 6 defines the run time representation for the placement of value i,
whose remote access does not take any arguments (type Unit) and returns a future

(type Future[Int]). Line 7 defines the signature of i for remote dispatch. Line 8 defines

the Marshallable instances for the placed value’s arguments and its return value.

Marshallable instances require a concrete type, for which the concrete serialization

format is known at compile time. Since such information is not available for abstract

types – e.g., generic type parameters for parameterizedmodules – themacro expansion

defers the Marshallable resolution to the specific implementations of the multitier

module that define a concrete type for the parameter. The following example shows

theMarshallable instance (line 2) for a value of type T in a parameterizedmodule (line 1),

which delegates to a method (line 5) that is to be implemented in a sub-module:

1 @MultitierModule trait SomeModule[T] { /* ... */
2 final protected val $loci$mar$SomeModule$0 = $loci$mar$deferred$SomeModule$0
3
4 @MarshallableInfo[T](0)
5 protected def $loci$mar$deferred$SomeModule$0: Marshallable[T, T, Future[T]]
6 }

As a next step, the macro performs the splitting of placed values:

1 @MultitierModule trait SimpleModule { /* ... */
2 @compileTimeOnly("Remote access must be explicit.") @MultitierStub
3 val i: Int on MyPeer = null.asInstanceOf[Int on MyPeer]
4
5 trait <placed values of SimpleModule>extends PlacedValues {
6 val i: Int = $loci$expr$SimpleModule$0()
7 protected def $loci$expr$SimpleModule$0(): Int = null.asInstanceOf[Int]
8 }
9 trait $loci$peer$MyPeer extends <placed values of SimpleModule>{
10 protected def $loci$expr$SimpleModule$0(): Int = 1
11 }
12 }

After expansion, the placed value i at the module-level is nulled and annotated to be

compile-time-only (line 3), i.e., the value cannot be accessed in plain Scala code. The

value is kept as a compile-time-only value such that other multitier modules can be
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type-checked against this module. After type-checking, the macro removes references

to compile-time-only values in multitier code. The compile-time-only approach allows

us to keep the static specification of placed values (and their placement types) but

remove their implementation. Instead, our transformation creates a nested trait for

every peer to separate the peer-specific implementations of placed values.

The code generation creates a <placed values> trait nested inside the multitier module

(line 5). The trait contains all values of the multitier module. In particular, it defines

the placed value i (line 6), which is of type Int (instead of type Int on MyPeer as the
module-level definition), i.e., placement types are erased from generated code on

the implementation side. Note that placement types are retained on the specification

side (line 3) for type-checking at compile time. The value i is initialized by calling

the generated method $loci$expr$SimpleModule$0 (line 6), which is nulled by default

(line 7). The value is nulled since it is not available on every peer but we need to keep

the value in the <placed values> trait to retain Scala’s evaluation order. The MyPeer-
specific $loci$peer$MyPeer trait specializes the <placed values> trait making for i being
initialized to 1 for MyPeer peer instances (line 10).

Finally, for every generated peer trait, the macro synthesizes a $loci$dispatchmethod,

which accesses the placed values for remote accesses:

1 @MultitierModule trait SimpleModule { /* ... */
2 trait $loci$peer$MyPeer extends <placed values of SimpleModule>{ /* ... */
3 def $loci$dispatch(request: MessageBuffer, signature: Value.Signature,
4 reference: Value.Reference) =
5 signature match {
6 case $loci$val$SimpleModule$0.signature =>
7 Try { i } map { response =>
8 $loci$mar$SimpleModule$0.marshal(response, reference)
9 }
10 case _ => super.$loci$dispatch(request, signature, reference)
11 }
12 }
13 }

For providing a placed value to a remote instance (line 6), the local value is accessed

(line 7), potentially unmarshalling its arguments and marshalling its return value

(line 8). In case the module does not contain a definition for the value, remote dispatch

is delegated to the super module (line 10), mirroring Scala’s method dispatch.

5.3 Macro Expansion for Remote Access

Since, in our example, we define a MyPeer-to-MyPeer tie, we can access the value i
remotely from another MyPeer instance. We add the remote access i.asLocal (line 4):

1 @multitier trait SimpleModule {
2 @peer type MyPeer <: { type Tie <: Single[MyPeer] }
3 val i: Int on MyPeer = placed { 1 }
4 val j: Future[Int] on MyPeer = placed { i.asLocal }
5 }
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Similar to the expansion of value i (cf. section 5.2), the definition of value j is
extracted into a peer-specific method $loci$expr$SimpleModule$1:

1 @MultitierModule trait SimpleModule { /* ... */
2 trait $loci$peer$MyPeer extends <placed values of SimpleModule>{ /* ... */
3 protected def $loci$expr$SimpleModule$1(): Unit =
4 BasicSingleAccessor[Int, MyPeer, Future[Int], MyPeer](RemoteValue)(
5 new RemoteRequest(
6 (), $loci$val$SimpleModule$0, $loci$peer$sig$MyPeer, $loci$sys)
7 ).asLocal
8 }
9 }

The transformation from the i.asLocal user code to the call into the runtime system

(lines 4 to 7) ties the knot between the direct-style remote access of ScalaLocimultitier

code and the message-passing-based network communication of our communication

backend (section 6). The interface for remote access (i.e., the asLocal call in the

example) is declared by an implicit class. In the example, the interface is defined by

the BasicSingleAccessor implicit class, which requires an implicit Transmission argument

for accessing the remote value (cf. section 4.2). The Transmission argument is rewritten

by the macro to a RemoteRequest (line 5) that is instantiated with (i) the arguments

for the remote call, (ii) the signature of the accessed value, (iii) the signature of

the peer on which the value is placed and (iv) a reference to the runtime system

(inherited from PlacedValues trait) that manages the network connections. With these

information assembled by macro expansion, asLocal can perform the remote access.

5.4 Peer Contexts

Before invoking the type checker, the macro performs a transformation step on the

untyped AST to compensate for the lack of contextual abstractions in Scala 2, which

are to be available Scala 3 [39]. The current context determines for any expression

to which peer it belongs (cf. section 4.1). Since the context needs to be available

to the type checker, the transformation has to take place before type-checking. It

transforms placed expressions of the form placed { e } to placed { implicit ! => e }, where !
is the name of the argument carrying the (implicit) peer context. In the lexical scope

of the expression e, the context can be resolved by the compiler from the implicit

scope. For better IDE support, the implicit argument can also be written explicitly by

the developer, in which case we do not transform the expression.

5.5 Interaction with the Type System

Since (i) we rely on type-checked ASTs for guiding the code splitting by placement

types and (ii) splitting changes the shape of the multiter module (i.e., adding members

to the annotated module), essentially changing the module’s type, the AST transfor-

mation needs to be performed during compilation. Scala’s macro system enables such

interaction with the type system, which is essential for splitting ScalaLoci multitier

code, in contrast to code generation approaches that run strictly before the compiler.
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Yet, in our experience, invoking the type checker for annotated classes, traits or

objects is quite fragile with the current Scala macro system. Type-checking the AST

again after transformation, where trees are re-type-checked in a different lexical con-

text after transformation, can easily corrupt the owner chain of the compiler’s symbol

table. To work around those issues, we implemented a transformation that converts

ASTs such that they can be re-type-checked. This transformation is independent of

the code splitting and is available as a separate project.3

Type-checking multitier modules expands all nested macro invocations. We exten-

sively used ScalaLoci with a domain-specific language for reactive programming that

relies on def macros (i.e., expression-based macros). We did not observe any issue

with mixing different macro-based language extensions. Invoking the type checker for

macro annotations (i.e., annotation-based macros) on modules which are themselves

nested into other modules, however, is not supported by the current macro system.

5.6 Lessons Learned

In our experience, performing complex AST transformations is quite involved using the

current Scala macro system, which lacks built-in support for automatic hygiene [9],

i.e., separating the lexical scopes of the macro implementation and the macro call site

to guarantee the absence of name clashes between user code and code generated by

macro expansion. The macro developer is responsible for ensuring that the generated

code does not interfere with the lexical scope of the macro call site by creating identifier

names that are expected to be unique or using fully qualified names. Moreover, the

macro system exposes compiler internals such as the compiler’s symbol table, which

developers have to keep consistent when transforming typed ASTs. When moving

ASTs between different contexts or mixing typed ASTs with newly generated untyped

ASTs, developers have to fix the symbol chain manually or re-type-check the AST.

This complex interaction with the type system is the reason why the macro system

considered for the next version of Scala (and currently being implemented in the

Dotty compiler) does not allow explicit interaction with the type system [40]. The new

TASTy reflection API properly abstracts over compiler internals and only supports ASTs

that are already typed. Macro systems of other languages, such as Racket, are more

powerful, supporting the addition of new syntactic forms through the transformation

of arbitrary Racket syntax. The revised Scala macros, however, are still more powerful

than macro systems like Template Haskell, which do not take the AST as input

without explicitly quoting expressions at the call site. Expanding macros on typed

ASTs helps in controlling the power of macros and keeping syntactic and semantic

deviations from plain Scala small. Prohibiting any kind of interaction with the type

system, however, seems too limiting and would make a macro-based implementation

of ScalaLoci impossible. Other use cases currently covered by macro annotations are

also not well supported under the new scheme, e.g., auto-generation of lenses for

manipulating data structures [57] or auto-generation of serializers [5]. To restore

3 http://github.com/stg-tud/retypecheck
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support for such use cases, we could imagine an approach that allows macros to

change types in a clearly-defined and controlled way. For instance, the macro could

be expanded in several phases that allow for different kinds of modifications:

1. In a first phase, the macro can inspect (but not transform) the current untyped AST

and declare members, super traits or super classes and annotations that should be

added to the annotated class, trait, object or its companion. Only declarations are

required for the following type-checking, not necessarily their definitions.

2. The complete code is type-checked.

3. Similar to the first phase, the macro can inspect (but not transform) the tree which,

in contrast to the first phase, is now type-checked. The macro can again declare

members, super traits or super classes and annotations that should be added to the

annotated class, trait, object or its companion. It may be necessary to further restrict

the members, which could be declared, e.g., disallowing adding members that

interfere with implicit or method overload resolution since both already happened

as part of the type-checking in the second phase.

4. The new member declarations are type-checked. Since no members can be removed

and adding members can be restricted appropriately, it is sufficient to only type-

check the new members.

5. Finally, macro annotations are expanded. Macro expansion works on type-checked

ASTs. Members generated in the previous phases are visible to the macro.

We believe that well-defined interfaces for macros are essential to retain the current

level of usefulness of macro annotations in a future macro system while avoiding the

issues of the current macro system.

6 Runtime

The ScalaLoci communication runtime hides the implementation details of network

communication, e.g., data serialization and underlying network protocols, such that

developers can access remote values in direct style (via asLocal) instead of explicitly

sending network messages and registering callbacks for receiving messages. Figure 3

shows the communication runtime which underlies a ScalaLocimultitier program. Our

runtime system provides abstraction layers for different network protocols, serializa-

tion schemes and the type-safe transmission of values.

6.1 Communicators

The lower layer defines communicators abstracting over network protocols. We cur-

rently support TCP (on the JVM), WebSocket (on the JVM and in web browsers) and

WebRTC (in web browsers). Communicators can be instantiated in listening mode

(e.g., binding a local TCP port and listening for incoming connections) or connect-

ing mode (e.g., initiating a TCP connection to a remote host). After establishing a

connection, the communicators of both endpoints create a Connection object that pro-

vides a bidirectional message-passing channel, abstracting over the communication
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model of the underlying protocol, such as TCP byte streams or WebSocket messages.

Communicators also offer additional meta information about the established network

connection to the higher level, such as if the connection is secure (i.e., encrypted

and integrity-protected) or authenticated (and which user token or certificate was

used for authentication). Currently, communicators are restricted to point-to-point

bidirectional channels. Yet, in the future, we may support additional communication

schemes, e.g., broadcasting, single-shot request–response, etc.

6.2 Serializers

To serialize values of a specific type for network transmission, the runtime requires

an implementation of the Serializable type class for every such type – encoded in Scala

using the concept pattern [41]. The compiler derives Serializable instances using Scala’s

implicit resolution, guaranteeing that values of a certain type are serializable.

The type class Serializable[T] witnesses that a value of type T is serializable by pro-

viding methods for both serialization and deserialization:

1 trait Serializable[T] {
2 def serialize(value: T): MessageBuffer
3 def deserialize(value: MessageBuffer): Try[T]
4 }

The runtime invokes the Serializable methods to convert between a value of type T
and a MessageBuffer, buffering the byte array to be sent or received over the network.

Serialization is not expected to fail, but deserialization may result in a runtime error

if the buffer does not contain a valid serialization. Hence, the return value is wrapped

in a Try, which represents either a success value or a failure.

We implemented two serializers that simply forward to the µPickle [27] or circe [5]

serialization libraries, respectively. The µPickle serializer, for example, is declared

as an implicit value of type Serializable[T] given that the compiler is able to resolve

implicit instances for Writer[T] and Reader[T] (which are type classes defined by µPickle

for serializing and deserializing values):

1 implicit def upickleSerializable[T]
2 (implicit writer: Writer[T], reader: Reader[T]): Serializable[T] = // ...

For a required implicit Serializable[Int] instance, the compiler automatically resolves

the call upickleSerializable(upickle.default.IntWriter, upickle.default.IntReader), constructing
a Serializable[Int] instance based on µPickle’s IntWriter and IntReader.

6.3 Transmitters

The higher level defines transmitters implementing the transmission semantics specific

to a certain data type. To make a type of value available for transmission, the runtime

requires an implementation of the Transmittable type class for every such type. A

Transmittable[B, I, R] instance witnesses that a value of type T can be send over the

network as value of type I and whose local representation after remote access is of
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type R. When accessing a value remotely, the runtime creates related Transmittable
instances on both connection endpoints.

Primitive and standard collection values are retrieved from a remote instance in

a pull-based fashion upon each request. However, accessing event streams, on the

other hand, does not exhibit pull-based semantics. Instead, events are pushed to

remote instances for every event occurrence. Runtime support for accessing event

streams remotely is crucial since communication in distributed systems is often event-

based [11, 31] and event streams allow for data across hosts to be specified in a

declarative way (cf. design principle #4). To support such use case, the runtime

allows transmitters to operate in connected mode, providing a typed message channel

between both communication endpoints. The remote event stream uses the channel to

propagate events in a push-based manner over the network. The runtime can multiplex

multiple such message channels over the same underlying network connection.

The runtime comes with built-in support for transmitting primitive values and

standard collections. We further implemented transmitters for REScala [50] reactives

and Rx [32] observables, which developers can plug in when needed. The runtime is

extensible by defining Transmittable type class instances for additional types.

Transmitters abstract over different semantics for propagating values to remote

hosts. Depending on the type of the value that is accessed remotely, the compiler

automatically selects an appropriate transmitter through implicit resolution. The

communication runtime performs the actual network communication for remote

accesses at the ScalaLoci language level that are transformed into calls into the runtime

during macro expansion (cf. section 5.3). The communication runtime can also be

used independently of the macro-based language implementation to abstract over

transmission semantics, serialization and network protocols.

6.4 Lessons Learned

Instances of the Transmittable type class, which implement the transmission semantics

for a specific type, can be nested, e.g., transmitting an n-tuple requires a Transmittable
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instance for every of the n elements. For accessing a value of type T remotely, the

compiler has to resolve both a Transmittable instance and a serializer from the implicit

scope. In our experience, failing to resolve a (deeply) nested implicit value leads to

less-than-optimal error messages by the compiler because the compiler only reports

on the outermost implicit that could not be resolved since it is generally not clear

for which of the possibly multiple alternatives for resolving nested implicit values a

developer expected implicit resolution to succeed. In our use case, we expect that

Transmittable instances should always be resolvable or the compiler should issue an

error if no matching Transmittable instance is in scope.

For such use cases, we propose the following scheme to achieve more precise error

messages: We provide a fallback implicit value for Transmittable, which is defined in the

Transmittable object. Such values are resolved by the Scala compiler with lower priority

in case there is no other matching implicit value in scope. This fallback value can

always be resolved but resolution results in a reference to a compile-time-only value,

i.e., carrying the compileTimeOnly annotation. With this scheme, implicit resolution for

Transmittable instances always succeeds. If there is no usable Transmittable instance in

scope, however, the resolved fallback value results in a more meaningful compiler

error that hints at the nested Transmittable which could not be resolved.

Another issue with Scala implicits we encountered is their lack of global coherence

guarantees. In contrast to Haskell, where type class instances are globally unique,

i.e., there is at most one type class implementation for every type in the whole

program, Scala allows different type class instances for the same type. Precedence

rules for implicit resolution decide which type class instance is chosen by the compiler.

Coherence is important for our use case, since the definition site of a placed value –

and the generated dispatch logic for remote accesses (section 5.2) – and the remote

call site of a placed value (section 5.3) need to agree on the transmission semantics

implemented by the Transmittable type class instance. By inspecting the AST, containing
the values implicitly resolved by the compiler, during macro expansion, we ensure

that Transmittable instances are coherent or issue a compiler error otherwise.

7 Related Work

Multitier Programming Multitier programming [13, 14, 43, 45, 46, 47, 53] is in the

tradition of programming languages for distributed systems with influential languages

such as Argus [28], Emerald [4], Distributed Oz [22, 58] and Dist-Orc [2]. More recent

contributions focus on specific design aspects, e.g., cloud types to ensure eventual

consistency [7], conflict-free replicated data types (CRDT) [55], language support for

safe distribution of computations [34] and fault tolerance [33].

Multitier languages emerge in the web context to remove the separation between

client and server code, either by compiling the client side to JavaScript or by adopt-

ing JavaScript for the server, too. Hop [53] and Hop.js [54] are dynamically typed

languages that follow a traditional client–server communication scheme with asyn-

chronous callbacks. In Links [14, 18] and Opa [46], functions are annotated to specify

either client- or server-side execution. Both languages also follow the client–server
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model and feature a static type system. In StiP.js [43, 44], annotations assign code

fragments to the client or the server. Slicing detects the dependencies between each

fragment and the rest of the program. In contrast, in ScalaLoci, developers specify
placement in types, enabling architectural reasoning. All approaches above focus on

the web, contrarily to our goal of supporting other architectures. An exception is

ML5 [37]: Possible worlds, as known from modal logic, address the purpose of placing

computations and, similar to ScalaLoci, are part of the type. ML5, however, does

not support architecture specification, i.e., it does not allow for expressing different

architectures in the language and was only applied to the Web setting so far.

Metaprogramming Compile-timemetaprogramming was pioneered by the Lisp macro

system [23] that supports transformations of arbitrary Lisp syntax, facilitating the ad-

dition of new syntactic forms. Racket, a Lisp dialect, is designed to allow building new

languages based on macros [17]. In contrast, but in line with Scala’s upcoming macro

system that only supports typed ASTs, the main part of our macro transformation is

not a pure syntax-to-syntax transformation, but works on ASTs that are already typed.

Thus, Scala macros are more restrictive than Lisp macros since untyped Scala macros

are deemed too powerful [8], e.g., hindering tool support.

In Template Haskell [56], Haskell metaprograms generate ASTs, which the compiler

splices into the call sites. Such metaprograms do not take ASTs as input without

explicitly using quasiquotation at the call site. Template Haskell has been used to

optimize embedded domain-specific languages at compile time [52].

Rust supports hygienic declarative macros that expand before type-checking and de-

fine rewrite rules to transform programs based on syntactic patterns. Rust’s procedural

macros are more powerful using Rust code to rewrite token streams and accessing

compiler APIs. A combination of Rust’s type system and macro system was shown to

support a shallow embedding of the lambda calculus [24].

Related Paradigms The actor model [25] encapsulates control and state into con-

current units that exchange asynchronous messages. The resulting decoupling by

asynchronous communication and by the no-shared-memory approach enables scala-

bility and fault tolerance.

Reactive programming [3] provides abstractions for defining time-changing values

(signals), event streams and their combination. In line with multitier programming,

distributed reactive programming [35, 36, 29] allows developers to define event

streams that span over different machines.

Software architectures [19, 42] organize software systems into components and

their connections as well as constraints on their interaction. Architecture description

languages (ADL) [30] provide a mechanism for high-level specification and analysis of

large software systems, for example, to guide architecture evolution. Partitioned Global

Address Space Languages (PGAS), such as X10 [15], provide a programming model

for high-performance parallel execution. PGAS languages define a globally shared

address space aiming at a goal similar to multitier languages – reduce boundaries

among hosts.

17:22



Pascal Weisenburger and Guido Salvaneschi

8 Conclusion

In this paper, we presented the implementation of the ScalaLoci multitier language

and its design as a domain-specific language embedded into Scala. We show how to

exploit Scala’s advanced language features, i.e, type level and macro programming,

for embedding ScalaLoci abstractions. We reported on our experiences with such an

approach and the challenges we needed to tackle and how they led to the current

ScalaLoci architecture and implementation strategy.
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