
81

A Survey of Multitier Programming

PASCAL WEISENBURGER, JOHANNES WIRTH, and GUIDO SALVANESCHI, Technische

Universität Darmstadt, Germany

Multitier programming deals with developing the components that pertain to different tiers in the system (e.g.,

client and server), mixing them in the same compilation unit. In this paradigm, the code for different tiers is

then either generated at run time or it results from the compiler splitting the codebase into components that

belong to different tiers based on user annotations, static analysis, types, or a combination of these. In the Web

context, multitier languages aim at reducing the distinction between client and server code, by translating the

code that is to be executed on the clients to JavaScript or by executing JavaScript on the server, too. Ultimately,

the goal of the multitier approach is to improve program comprehension, simplify maintenance and enable

formal reasoning about the properties of the whole distributed application.

A number of multitier research languages have been proposed over the last decade, which support various

degrees of multitier programming and explore different design trade-offs. In this paper, we provide an overview

of the existing solutions, discuss their positioning in the design space and outline open research problems.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering

→ Distributed programming languages; Domain specific languages; • Theory of computation → Dis-

tributed computing models.

Additional Key Words and Phrases: Multitier Languages, Tierless Languages, Distributed Programming

ACM Reference Format:

Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. 2020. A Survey of Multitier Programming. ACM

Comput. Surv. 53, 4, Article 81 (September 2020), 35 pages. https://doi.org/10.1145/3397495

1 INTRODUCTION

Developing distributed systems is widely recognized as a complex and error-prone task. A number
of aspects complicate programming distributed software, including concurrent execution on differ-
ent nodes, the need to adopt multiple languages or runtime environments (e.g., JavaScript for the
client and Java for the server), and the need to properly handle complex communication patterns
considering synchronicity/asynchronicity, consistency as well as low-level concerns such as data
serialization and format conversion. Over the years, developers and practitioners have tackled these
challenges with methods that operate at different levels. Various middlewares abstract over mes-
sage propagation (e.g., Linda [51]). Primitives for remote communication (RPC, e.g., CORBA [54],

This work has been co-funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) ś SFB 1053 ś

210487104 ś and ś SFB 1119 ś 236615297, by the DFG projects 322196540 and 383964710, by the LOEWE initiative (Hesse,

Germany) within the emergenCITY centre and within the Software-Factory 4.0 project and by the German Federal Ministry

of Education and Research and the Hessian State Ministry for Higher Education, Research and the Arts within their joint

support of the National Research Center for Applied Cybersecurity ATHENE..
Authors’ address: Pascal Weisenburger, weisenburger@cs.tu-darmstadt.de; Johannes Wirth, johannes-wirth@posteo.de;

Guido Salvaneschi, salvaneschi@cs.tu-darmstadt.de, Technische Universität Darmstadt, Hochschulstraße 10, Darmstadt,

Hessen, 64289, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2020/9-ART81

https://doi.org/10.1145/3397495

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495

81:2 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

RMI [116]) give programmers the illusion of distribution transparency. Decoupling in the soft-
ware architecture improves concurrency and fault tolerance (e.g., the Actor model [60]). Finally,
out-of-the-box specialized frameworks can manage fault recovery, scheduling and distribution
automatically (e.g., MapReduce [41]).

A radically innovative solution has been put forward by the so-calledmultitier programming (MT)
approach (sometimes referred to as tierless programming). MT programming consists of developing
the components that pertain to different tiers in the system (e.g., client and server), mixing them in
the same compilation unit. Code for different tiers is generated at run time or split by the compiler
into components that belong to different tiers based on user annotations and static analysis, types
or a combination of these.

A number of MT research languages have been proposed over the last decade, demonstrating the
advantages of this paradigm (e.g., [13, 30, 34, 119]), including improving software comprehension,
enhancing software design, enabling formal reasoning and ameliorating maintenance. In parallel, a
number of industrial solutions include concepts from MT programming (e.g., [10, 14, 128]), showing
that this approach has great potential in practice.
The success of the MT paradigm has led to a variety of solutions that occupy different points

in the design space. These solutions mix techniques (e.g., compile time vs. run time splitting) and
design choices (e.g., placement of compilation units vs. placement of single functions) that often
depend on the application domain as well as on the software application stack. As a result, it is hard
to get a complete picture of the existing trade-offs based on a precise taxonomy of the available
design decisions. In this paper, we fill this gap, providing researchers and practitioners with an
overview of MT languages and of the fundamental design decisions that this paradigm entails.
After presenting a selection of influential MT languages, we systematically analyze existing MT
approaches along various axes, highlighting the most important achievements for each language.
Finally, we provide an overview of related research areas and of the open research challenges in
the field.
This paper is structured as follows. Section 2 introduces MT programming. Section 3 presents

concrete examples of MT programming languages to implement a reference application. Section 4
discusses existing MT languages according to our analysis axes. Section 5 provides an overview
of open research issues in the area. Section 6 presents approaches that are closely related to MT
programming. Section 7 concludes.

2 MULTITIER PROGRAMMING IN A NUTSHELL

Multitier Program

Multitier Compiler Splitting

JVMBrowser

ServerClient

Fig. 1. Multitier Programming.

The different components of a distributed applica-
tion are executed on different tiers, where each tier
can run on a different machine in a network. For ex-
ample, a 3-tier (or 3-layer) application is organized
into three major parts ś usually presentation, appli-
cation processing, and data management ś residing in
different network locations [20]. One of the advan-
tages of this approach is that, by organizing a system
into tiers, the functionality that is encapsulated into
one of the tiers can be modified independently, in-
stead of redesigning the entire application.
As a result of this architectural choice, however, a crosscutting functionality that belongs to

multiple tiers is separated among several compilation units. For example, in the Web setting, func-
tionality is often scattered across client and server. Also, in many cases, each layer is implemented
in a different programming language depending on the technology of the underlying layer, e.g.,

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:3

JavaScript for the browser-based interface, Java for the server-side application logic and SQL for
the database.

In an MT programming language, a single language can be used to program different tiers, often
adopting different compilation backends based on the target tier (e.g., JavaScript for the browser,
Java for the server). As a result, a functionality that spans over multiple tiers can be developed
within the same compilation unit. The compiler takes care of generating multiple deployable units
(Figure 1) starting from a single MT program as well as of generating the communication code that
is required for such modules to interact during program execution.

2.1 Benefits of Multitier Programming

In this section, we provide an overview of the main advantages offered by the MT language design.
We report the main claims found in literature and refer to the sources where these are discussed.

2.1.1 Higher Abstraction Level. An important advantage of MT programming is that it enables
abstracting over a number of low-level details relevant to programming distributed systems. As
a result, software development is simplified and programmers can work at a higher level of ab-
straction [142]. There are different aspects to consider. First, developers do not face the issue
of dealing with error-prone aspects like network communication, serialization, and data format
conversions between different tiers [110]. Second, with MT programming, there is no need to
design the inter-tier APIs, for example specifying the REST API a server exposes to clients. The
technologies used for inter-tier communication are usually transparent to the developer [119] and
a detail of the compilation approach.

2.1.2 Improved Software Design. In many distributed applications, the boundaries between hosts
and the boundaries between functionalities do not necessarily coincide, i.e., a single functionality
can span multiple locations and a single location can host multiple functionalities. For example,
retrieving a list of recent emails requires a search on the server, filtering the result on the client
and displaying the result. All these operations conceptually pertain to the same functionality.
Programming each location separately may result in two design issues. First, it can compromise
modularity because functionality (e.g., email retrieval) is scattered across the codebases of different
hosts. Second, it is error-prone because of code repetition. For example, encryption requires
encrypting and decrypting data on both ends of the communication channel, and the associated
functions need to be available on both the client and the server. In contrast, MT programming
allows for developing a functionality once and then place it where required [43].

2.1.3 Formal Reasoning. Formal reasoning can benefit from MT design because MT languages
model distributed applications as a whole as well as reify a number of aspects of distributed
software that are usually left implicit, like placement, components of the distributed system,
and the boundaries among tiers. Hence, it becomes easier to formally reason about software
properties considering thewhole system at once instead of each component in isolation. For example,
researchers have developed methods to reason about concurrency [98] and security [11] considering
information flow in the whole system. Also, performance can be improved by eliminating dynamic
references of global pointers [27]. Finally, researchers considered domain-specific properties, such
as reachability in software defined networks via verification [97].

2.1.4 CodeMaintenance. MTprogramming simplifies the process of modifying an existing software
system. Two cases are particularly interesting for MT. First, migrating functionality among different
tiers does not require a complete rewrite in a different language [53]. For example, validating user
input should already happen on the client-side to improve usability and must happen on the server
to enforce input validation before further processing. Both validation functions share the same

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:4 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

code. Second, it is easier to migrate an application among different platforms [46]. For example, in
principle, the client-side logic of a clientśserver desktop application can be migrated to the Web
just by changing the compilation target of the client side to JavaScript.

2.1.5 Program Comprehension. Program comprehension refers to the complexity (time, required
expertise) that a developer faces to come up with a correct mental model of the behavior of a
program [125]. A crucial advantage of MT programming is that it simplifies reasoning about
data flow over multiple hosts because data flows that belong to a certain functionality are not
interrupted by the modularization across the tier axis and by the details of communication code
ś simplifying development as well as debugging [87]. We are, however, not aware of empirical
studies or controlled experiments that measure the advantage of MT programming in terms of
program comprehension.

2.2 An Overview of Multitier Languages

In this survey, we compare MT languages, i.e., languages that support implementing different tiers
of a distributed system within a single compilation unit. This survey focuses on homogeneous MT
programming, where tiers follow the same model of computation and have similar processing
capabilities. Databases are an example for a tier with a computational model that is typically
different from the one of the tier that accesses the database, such as a web server. For MT languages
that support heterogeneous tiers, such as databases, we only briefly describe the language features
that are supported. Table 1 lists theMT approaches we discuss systematically and related approaches
on which we touch to point out their connection to MT programming.

Multitier Languages. In this paper, we first show the implementation of a small application (Sec-
tion 3) in a representative selection of MT languages. These include two languages that pioneered
MT programming for the web (Hop/Hop.js and Links), two recent approaches focusing on web
development (Ur/Web and Eliom), an approach that also supports more general distributed systems
than web applications (ScalaLoci) and Google’s GWT, an industrial solution for cross compilation
to different tiers, that, however, provides no specific MT abstractions. We then conduct a systematic
feature comparison (Section 4) among homogeneous MT languages (first segment of Table 1).
In this survey, we also include programming frameworks that target distributed applications

where several tiers are developed together, using the same language (second segment of Table 1).
For example, such frameworks reuse existing (non-MT) languages and communication libraries,
compiling to JavaScript for the client-side (GWT), using JavaScript for both the client and the server
(Meteor) or use an external configuration file for specifying the splitting (J-Orchestra). In these
languages, the presence of different tiers is clearly visible to the programmer either in the form of
configuration files or source annotations.

Related Approaches. In this survey, we also elaborate on closely related approaches (third segment
of Table 1) that do not completely fit the programming model of the aforementioned MT languages
and the taxonomy of our feature comparison. Hence, we do not classify them systematically but
highlight their connection to MT programming where they relate to the discussed MT aspects.
Such approaches (a) do not express tiers as part of their language abstractions because the code
is assigned to tiers transparently (Distributed Orc, Jif/split and Fission). In this group, we also
include Hiphop, where the language extends an MT language but the extension itself does not
add any MT abstraction, and SIF, which uses GWT for JavaScript compilation as well as a client
runtime library, and WebDSL, where the language only represents the state of the data model.
Other approaches do not completely fit the MT programming model that we consider because
they (b) do not include cross-tier communication, intentionally leaving remote communication

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:5

Table 1. Overview of MT Languages

Language Short Description

Hop/Hop.js [119, 120] Dynamically typed language for developing web applications with a clientśserver communication
scheme and asynchronous callbacks.

Links [34, 49] Statically typed language that covers the client tier, the server tier and the access to the database tier.
It uses remote calls and message passing for clientśserver communication.

Ur/Web [30] ML-like language with support for type-safe metaprogramming that provides communication from
client to server through remote procedure calls and from the server to the client through message-
passing channels.

Eliom/Ocsigen [10, 110] OCaml dialect that extends the ML module system to support MT modules featuring separate compila-
tion; used in the Ocsigen project.

ScalaLoci [142] Supports generic distributed systems, not only web applications, thanks to placement types; features
remote procedures and reactive programming abstractions for remote communication.

StiP.js [103, 104] Allows developers to annotate the code that belongs to the client or to the server; slicing detects the
dependencies between the annotated fragment and the rest of the code.

Gavial [113, 114] Domain-specific language embedded into Scala that provides reactive programming abstractions for
cross-tier communication.

Opa [111] Statically typed language that supports remote communication via remote procedure calls andmessage-
passing channels.

AmbientTalk/R [26, 42] Targets mobile applications with loosely coupled devices and provides reactive programming abstrac-
tions on top of a publishśsubscribe middleware.

ML5 [96] Represents different tiers by different possible worlds, as known from modal logic.

WebSharper [14] Allows developers to specify client-side members and members that are callable remotely.

Haste [44] Uses monadic computations wrapping client and server code into different monads and provides ex-
plicit remote calls.

Fun [145] Enables automatic synchronization of data across web clients without manually implementing the com-
munication with the server.

Koka [78] Supports splitting code among tiers using a type and effect system by associating different effects to
different tiers.

Multi-Tier Calculus [98] Provides a formal model to reason about the splitting of MT code into a client and a server part and
the communication between both parts through message channels.

Swift [32] Splits an application into client and server programs based on the flow of private data, making sure
that private data does not flow to untrusted clients.

Volta [87] Uses attributes to annotate classes with the tier they belong to, automatically converting cross-tier
method calls to remote invocations.

GWT [68] Compiles Java to JavaScript for the client and provides remote procedures for clientśserver communi-
cation; developed at Google.

Meteor [128] A programming framework to use JavaScript for both the client and the server code; provides remote
procedures, publishśsubscribe abstractions and shared state.

J-Orchestra [131] Uses configuration files to assign Java classes to tiers, rewriting the Java bytecode to turn method
invocations into remote calls.

Hiphop [13] Extends Hop with synchronous data flows, focusing on guarantees on time and memory bounds.

Distributed Orc [130] The runtime optimizes the placements of values; it provides location transparency by giving local and
remote operations the same semantics, which allows for handling asynchrony and failures uniformly.

Jif/split [151] Splits a program into tiers based on the flow of private data, making sure that private data do not flow
to another tier.

Fission [56] Dynamically splits a program execution into client-side and server-side execution based on the flow of
private data, making sure that private data does not flow to untrusted clients.

SIF [33] Checks the flow of private data in a web application, making sure that private data does not flow to
untrusted clients.

WebDSL [53] Domain-specific language for specifying the data model of web applications and the web pages to view
and edit data model objects.

Acute [122] Supports type-safe marshalling for remote interaction, versioning of program code and dynamic code
reloading, leaving the network communication mechanism to libraries.

Mobl [59] Supports different concerns of developing the client-side of web applications, such as the data model,
the application logic and the user interface.

High-Level Abstractions for
Web Programming [115]

Provides a Scala EDSL that captures common tasks performed in web applications, e.g., defining DOM
fragments.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:6 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

Listing 1. Echo application in Hop.js.

1 service echo() {

2 var input = <input type="text" />

3 return <html>

4 <body onload=~{

5 var ws = new WebSocket("ws://localhost:" + ${hop.port} + "/hop/ws")

6 ws.onmessage = function(event) { document.getElemenetById("list").appendChild(${event.data}) }

7 }>

8 <div>

9 ${input}

10 <button onclick=~{ ws.send(${input}.value) }>Echo!</button>

11 </div>

12 <ul id="list" />

13 </body>

14 </html>

15 }

16

17 var wss = new WebSocketServer("ws")

18 wss.onconnection = function(event) {

19 var ws = event.value

20 ws.onmessage = function(event) { ws.send(event.value) }

21 }

support to libraries, such as Acute and several languages for web applications Mobl, High-Level
Abstractions for Web Programming.

MT development shares with cross-compilation the goal of abstracting over different tiers as
cross compilation abstracts over the heterogeneity of different target platforms. Cross-compilers
include, e.g., Haxe or the Kotlin language, the JSweet Java to JavaScript compiler, the Bridge.NET
and the SharpKit C# to JavaScript compilers, and the Scala.js Scala to JavaScript compiler. Yet, these
solutions do not offer specific language-level support for distribution and remote communication.
This survey discusses the difference between cross-compilers and MT languages, but it does not
consider cross-compilers in detail.

3 A GLIMPSE OF MULTITIER LANGUAGES

In this section, we present languages that have pioneered MT programming and/or have been very
influential in recent years. To provide an intuition of how MT programming looks like using those
languages, we present the same example implemented in each language. As an example, we show
an Echo clientśserver application: The client sends a message to the server and the server returns
the same message to the client, where it is appended to a list of received messages. The application
is simple and self-contained, and ś despite all the limitations of short and synthetic examples ś it
gives us the chance to demonstrate different MT languages side by side.

3.1 Hop

Hop [119] is a dynamically typed Scheme-based language. It follows the traditional approach of
modeling communication between client and server using asynchronous callbacks for received
messages and return values. JavaScript code is generated at run time and passed to the client. A
recent line of work has ported the results of Hop to a JavaScript-based framework, Hop.js [120],
which allows using JavaScript to program both the client and the server side.

Listing 1 shows the Echo application implemented in Hop.js. HTML can be embedded directly in
Hop code. HTML generated on the server (Line 2ś14) is passed to the client. HTML generated on
the client can be added to the page using the standard DOM API (Line 6).

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:7

Listing 2. Echo application in Links.

1 fun echo(item) server {

2 item

3 }

4

5 fun main() server {

6 page

7 <html>

8 <body>

9 <form l:onsubmit="{appendChildren({stringToXml(echo(item))}, getNodeById("list"))}">

10 <input l:name="item" />

11 <button type="submit">Echo!</button>

12 </form>

13 <ul id="list" />

14 </body>

15 </html>

16 }

17

18 main()

Hop supports bidirectional communication between a running server and a running client
instance through its standard library. In the Echo application, the client connects to the WebSocket
server through the standard HTML5 API (Line 5) and sends the current input value (Line 10). The
server opens a WebSocket server (Line 17) that returns the value back to the client (Line 20).
The language allows the definition of services, which are executed on the server and produce a

value that is returned to the client that invoked the service. For example, the echo service (Line 1)
produces the HTML page served to the web client of the Echo application. Thus, the code in a
service block is executed on the server.

Because of the ~{. . .} notation, the code for the onload (Line 4) and onclick (Line 10) handlers
is not immediately executed but the server generates the code for later execution on the client.
On the other hand, the ${. . .} notation escapes one level of program generation. The expressions
hop.port (Line 5), event.data (Line 6) and input (Line 9 and 10) are evaluated by the outer server
program and the values to which they evaluate are injected into the generated client program. Hop
supports full stage programming, i.e., ~{. . .} expressions can be arbitrarily nested such that not
only server-side programs can generate client-side programs but also client-side programs are able
to generate other client-side programs.

3.2 Links

Links [34] is a statically typed language that translates to SQL for the database tier and to JavaScript
for the web browser. The latter is a technique, which was pioneered by the typed query system
Kleisli [148] and adopted by Microsoft LINQ [133]. It allows embedding statically typed database
queries in Links. Recent work extended Links with algebraic effects [61], provenance tracking [45]
and session types [83] with support for exception handling [49]. Links’ Model-View-Update archi-
tecture [48] integrates session typing and GUI development.

Listing 2 shows the Echo application implemented in Links. Links uses annotations on functions
to specify whether they run on the client or on the server (Line 1 and 5). Upon request from the
client, the server executes the main function (Line 18), which constructs the code that is sent to the
client. Links allows embedding XML code (Line 7ś15). The l:name attribute (Line 10) declares an
identifier to which the value of the input field is bound and which can be used elsewhere (Line 9).
The code to be executed for the l:onsubmit handler (Line 9) is not immediately executed but

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:8 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

Listing 3. Echo application in Ur/Web.

1 fun echo (item : string) = return item

2

3 fun main () =

4 let fun mkhtml list =

5 case list of

6 [] => <xml/>

7 | r :: list => <xml>{[r]}{mkhtml list}</xml>

8 in

9 item <- source "";

10 list <- source [];

11 return <xml><body>

12 <div>

13 <ctextbox source={item} />

14 <button value="Echo!" onclick={ fn _ =>

15 list' <- get list;

16 item' <- get item;

17 item' <- rpc (echo item');

18 set list (item' :: list')

19 }/>

20 </div>

21

22 <dyn signal={

23 list' <- signal list;

24 return (mkhtml list')

25 }/>

26

27 </body></xml>

28 end

compiled to JavaScript for client-side execution. Curly braces indicate Links code embedded into
XML. The l:onsubmit handler sends the current input value item to the server by calling echo.
The item is returned by the server and appended to the list of received items using standard DOM
APIs. The call to the server (Line 9) does not block the client. Instead, the continuation on the client
is invoked when the result of the call is available. Clientśserver interaction is based on resumption

passing style: Using continuation passing style transformation and defunctionalization, remote calls
are implemented by passing the name of a function for the continuation and the data needed to
continue the computation. Rather than of constructing HTML forms manually, like in the example,
Links further supports formlets [35], an abstraction for composing HTML forms.
To access the database tier, Links features database expressions to represent database connec-

tions. For example, to store the list of received items in a server-side database, the expression
table "items" with (item: String) from database "list" refers to the items table in the list

database that contains records with a single item string field. Links supports language constructs
for querying and updating databases ś such as iterating over records using for, filtering using
where clauses, sorting using orderby or applying functions on lists, such as take and drop, to data
sets ś which are compiled into equivalent SQL statements.

3.3 Ur/Web

Ur/Web [30] is a language in the style of ML, featuring an expressive type system to support
type-safe metaprogramming. The type system ensures correctness of a broad range of properties
including (i) validity of generated HTML code, (ii) the types of values of HTML form fields matching
the types expected by their handlers or the types of columns of a database table, (iii) validity of SQL
queries, (iv) lack of dead intra-application links and (v) prevention of code injection attacks. Remote

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:9

Listing 4. Echo application in Eliom.

1 module Echo_app = Eliom_registration.App (struct let application_name = "echo" let global_data_path = None end)

2

3 let%server main_service = create ~path:(Path []) ~meth:(Get Eliom_parameter.unit) ()

4

5 let%server make_input up =

6 let inp = Html.D.Raw.input () in

7 let btn = Html.D.button ~a:[Html.D.a_class ["button"]] [Html.D.pcdata "Echo!"] in

8 ignore [%client

9 (Lwt.async (fun () ->

10 Lwt_js_events.clicks (Html.To_dom.of_element ~%btn) (fun _ _ ->

11 ~%up (Js.to_string (Html.To_dom.of_input ~%inp)##.value);

12 Lwt.return_unit)) : unit)];

13 Html.D.div [inp; btn]

14

15 let%server () = Echo_app.register

16 ~service:main_service

17 (fun () () ->

18 let item_up = Up.create (Eliom_parameter.ocaml "item" [%derive.json :string]) in

19 let item_down = Down.of_react (Up.to_react item_up) in

20 let list, handle = ReactiveData.RList.create [] in

21 let list = ReactiveData.RList.map [%shared fun i -> Html.D.li [Html.D.pcdata i]] list in

22 let input = make_input item_up in

23 ignore [%client

24 (Eliom_client.onload

25 (fun _ -> ignore (React.E.map (fun i -> ReactiveData.RList.cons i ~%handle) ~%item_down)) : unit)];

26 Lwt.return (Eliom_tools.D.html ~title:"echo" (Html.D.body [input; Html.R.ul list])))

procedure calls are executed atomically, with Ur/Web guaranteeing the absence of observable
interleaving operations.
Listing 3 shows the Echo application implemented in Ur/Web. Ur/Web allows embedding XML

code using <xml>. . .</xml> (Line 6 and 7). The {. . .} notation embeds Ur/Web code into XML. {[. . .]}
evaluates an expression and embeds its value as a literal. Ur/Web supports functional reactive
programming for client-side user interfaces. The example defines an item source (Line 9), whose
value is automatically updated to the value of the input field (Line 13) when it is changed through
user input, i.e., it is reactive. The list source (Line 10) holds the list of received items from the
echo server. Sources, time-changing input values, and signals, time-changing derived values, are
Ur/Web’s reactive abstractions, i.e., signals recompute their values automatically when the signals or
sources from which they are derived change their value, facilitating automatic change propagation.
Upon clicking the button, the current value of list (Line 15) and item is accessed (Line 16), then a
remote procedure call to the server’s echo function is invoked (Line 17) and list is updated with
the item returned from the server (Line 18). To automatically reflect changes in the user interface,
a signal is bound to the signal attribute of the HTML pseudo element <dyn> (Line 22). The signal
uses the mkhtml function (Line 24, defined in Line 4), which creates HTML list elements. In addition
to remote procedure calls ś which initiate the communication from client to server ś Ur/Web
supports typed message-passing channels, which the server can use to push messages to the client.
Ur/Web integrates a domain-specific embedding of SQL for accessing the database tier with

clauses such as SELECT, FROM or ORDERBY. For example, a set of database records storing the list
of received items is specified by a table items : { item : string } declaration. Such table decla-
rations can be private to a module using an ML-style module system for encapsulating database
tables.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:10 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

Listing 5. Echo application in GWT.

a.1 package echo.client;

a.2 public interface EchoService extends RemoteService {

a.3 String echo(String item) throws IllegalArgumentException; }

b.1 package echo.client;

b.2 public interface EchoServiceAsync {

b.3 void echo(String item, AsyncCallback<String> callback) throws IllegalArgumentException; }

c.1 package echo.server;

c.2 public class EchoServiceImpl extends RemoteServiceServlet implements EchoService {

c.3 public String echo(String item) throws IllegalArgumentException {

c.4 return item; } }

d.1 package echo.client;

d.2 public class Echo implements EntryPoint {

d.3 private final EchoServiceAsync echoService = GWT.create(EchoService.class);

d.4

d.5 public void onModuleLoad() {

d.6 final TextBox itemField = new TextBox();

d.7 final Button submitButton = new Button("Echo!");

d.8

d.9 RootPanel.get("itemFieldContainer").add(itemField);

d.10 RootPanel.get("submitButtonContainer").add(submitButton);

d.11

d.12 submitButton.addClickHandler(new ClickHandler {

d.13 public void onClick(ClickEvent event) {

d.14 echoService.echo(itemField.getText(), new AsyncCallback<String>() {

d.15 public void onFailure(Throwable caught) { }

d.16 public void onSuccess(String result) {

d.17 RootPanel.get("itemContainer").add(new Label(result)); } }); } }); } }

3.4 Eliom

Eliom [110] is an OCaml dialect designed in the context of the Ocsigen project [10] for developing
clientśserver web applications. Ocsigen further provides mechanisms to support a number of
practical features necessary inmodern applications, including sessionmanagement and bidirectional
clientśserver communication through its standard library.

Listing 4 shows the Echo application in Eliom. Eliom extends let-bindings with section annota-

tions %client, %server and %shared ś the latter indicates code that runs on both the client and the
server. The application starts with a call to Echo_app.register (Line 15). Eliom supports cross-
tier reactive values: The application generates a server-side event (Line 18) and a corresponding
client-side event (Line 19), which automatically propagates changes from the server to the client.
A reactive list (Line 20) holds the items received from the server. Mapping the list produces a list
of corresponding HTML elements (Line 21), which can directly be inserted into the generated
HTML code (Line 26). Eliom supports a DSL for HTML, providing functions of the same name as
the HTML element they generate. Server-side code can contain nested fragments to be run on the
client ([%client . . .], Line 23) or to be run on both the client and the server ([%shared . . .], Line 21).
Eliom uses injections (prefixed by ~%) to access values on the client side that were computed on
the server. The client-side representation of the event item_down is injected into a client fragment
to extend the reactive list with every item returned from the server (Line 25). The make_input

function (Line 5) generates the main user interface, which processes the stream of button clicks
(Line 10) and fires the up event for every item (Line 11). To fire the server-side up event from the
client-side, we inject the event via ~%up into the client fragment.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:11

Listing 6. Echo application in ScalaLoci.

1 @multitier object Application {

2 @peer type Server <: { type Tie <: Single[Client] }

3 @peer type Client <: { type Tie <: Single[Server] }

4

5 val message = on[Client] { Event[String]() }

6 val echoMessage = on[Server] { message.asLocal }

7

8 def main() = on[Client] {

9 val items = echoMessage.asLocal.list

10 val list = Signal { ol(items() map { message => li(message) }) }

11 val inp = input.render

12 dom.document.body = body(

13 div(

14 inp,

15 button(onclick := { () => message.fire(inp.value) })("Echo!")),

16 list.asFrag).render

17 }

18 }

3.5 Google Web Toolkit (GWT)

GWT [68] is an open source project developed at Google. Its design has been driven by a pragmatic
approach, mapping traditional Java programs to web applications. A GWT program is a Java Swing
application except that the source code is compiled to JavaScript for the client side and to Java
bytecode for the server side. Compared to fully-fledged MT programming, distributed code in
GWT is not developed in a single compilation unit nor necessarily in the same language. Besides
Java, in practice, GUIs often refer to static components in external HTML or XML files. Client and
server code reside in different Java packages. GWT provides RPC library support for cross-tier
communication.

Listing 5 shows the Echo application implemented in GWT. For the sake of brevity, we leave out
the external HTML file. The application adds an input field (Line d.9) and a button (Line d.10) to
container elements defined in the HTML file and registers a handler for click events on the button
(Line d.12). When the button is clicked, the echo method of the echoService is invoked with the
current item and a callback ś to be executed when the remote call returns. When an item is returned
by the remote call, it is added to the list of received items (Line d.17). GWT requires developers
to specify both the interface implemented by the service (Line a.2) and the service interface for
invoking methods remotely using a callback (Line b.2). The implementation of the echo service
(Line c.2) simply returns the item sent from the client.

3.6 ScalaLoci

ScalaLoci [142] is a language that targets generic distributed systems rather than the Web only,
i.e., it is not restricted to a clientśserver architecture. To this end, ScalaLoci supports peer types
to encode the different locations at the type level. Placement types are used to assign locations to
data and computations. ScalaLoci supports multitier reactives ś language abstractions for reactive
programming that are placed on specific locations ś for composing data flows cross different peers.

Listing 6 shows the Echo application implemented in ScalaLoci. The application first defines an
input field (Line 11) using the ScalaTags library [81]. The value of this input field is used in the click
event handler of a button (Line 15) to fire the message event with the current value of the input
field. The value is then propagated to the server (Line 6) and back to the client (Line 9). On the
client, the values of the event are accumulated using the list function and mapped to an HTML
list (Line 10). This list is then used in the HTML code (Line 16) to display the previous inputs.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:12 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

4 ANALYSIS

In this section we systematically analyze existing MT solutions along various axes. We consider
the following dimensions:

• Degrees of MT programming refers to the amount of MT abstractions supported by the
language. At one extreme of the spectrum, we find languages with dedicated MT abstractions
for data sharing among tiers and for communication. At the other end of the spectrum lie
languages where part of the codebase can simply be cross-compiled to a different target
platform (e.g., Java to JavaScript) to enhance the interoperability between tiers but do not
provide specific MT abstractions.

• Placement strategy describes how data and computations in the program are assigned to the
hosts in the distributed system, e.g., based on programmers’ decisions or based on automatic
optimization.

• Placement specification and granularity in MT languages refers to the means offered for
programmers to specify placement (e.g., code annotations, configuration files) and their
granularity level (e.g., per function, per class).

• Communication abstractions for communication among tiers are a crucial aspect in MT pro-
gramming since MT programming brings the code that belongs to different tiers to the same
compilation unit. MT approaches provide dedicated abstractions to simplify implementing
remote communication which differ considerably among languages.

• Formalization of MT languages considers the approach used to formally define the semantics
of the language and formally prove properties about programs.

• Distribution topologies describe the variety of distributed architectures [50] (e.g., clientśserver,
peer-to-peer) that a language supports.

4.1 Degrees of MT Programming

Several programming frameworks for distributed systems have been influenced, to various degrees,
by ideas from MT. In this section, we compare languages where MT programming is supported
by dedicated abstractions, either by explicitly referring to placement in the language or by using
scoping in the same compilation unit to define remote communication, and approaches that share
similar goals to MT programming using compilation techniques that support different targets (and
tiers), but do not expose distribution as a language feature to the developer. Table 2 provides an
overview of existing solutions concerning the degree of supported MT programming. Specifically,
it considers support for cross compilation and the supported language features for distribution.

Multitier distribution provides a programming model that defines different tiers and offers
abstractions for developers to control the distribution.

Transparent distribution does not support code assignment to tiers as a reified language
construct. Splitting into tiers is computed transparently by the compiler or the runtime and
not part of the programming model.

No distribution abstractions do not provide language features specific to the distribution of
programs.

When running distributed applications on different machines, approaches related to MT pro-
gramming either assume the same execution environment, where all tiers can be supported by
a uniform compilation scheme, or employ a cross compilation approach to support different
target platforms. Cross-compilers can be used to support the development of distributed systems
(e.g., by compiling client-side code to JavaScript) but still require manual distribution of code
and do not offer abstractions for remote communication among components as MT languages do.
Traditional languages, falling into the bottom right corner of Table 2, neither support distribution

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:13

Table 2. Degrees of MT Programming

Compilation Approach Distribution Approach

Distribution No Distribution Abstractions

Multitier Transparent

Cross Compilation Hop Haxe

Links Kotlin

Opa JSweet

Ur/Web Bridge.NET

Eliom/Ocsigen SharpKit

Gavial Scala.js

ML5 WebDSL

ScalaLoci Mobl

WebSharper High-Level Abstractions

Haste for Web Programming

Swift

Volta

GWT

Uniform Compilation Hop.js Distributed Orc Hiphop

StiP.js Jif/split SIF

AmbientTalk/R Fission Acute

Fun (traditional languages)

Koka

Multi-Tier Calculus

J-Orchestra

Meteor

nor cross compilation. Hiphop [13] does not provide its own support for distribution but relies
on Hop’s [119] MT primitives. SIF [33] uses information flow control to ensure that private data
does not flow to untrusted clients. It is implemented on top of Java Servlets, which respond to
requests sent by web clients. Acute [122] is an OCaml extension that, although it does not support
distribution or cross compilation, provides type-safe marshalling for accessing resources remotely
based on transmitting type information at run time for developing distributed systems.

We provide examples for the multitier category, which is extensively discussed in the rest of the
paper, and systematically analyze the second and third approach using transparent splitting by the
compiler or manual splitting and cross compilation, respectively.

4.1.1 Dedicated MT Programming Abstractions. MT languages provide abstractions that reify the
placement of data and computations and allow programmers to directly refer to these concepts in
their programs. In Hop.js [120], inside the same expression, it is possible to switch between server
and client code with ~{. . .} and ${. . .}, which can be arbitrarily nested. Similarly, the Ur/Web [30]
language provides the {. . .} escape operator. In ScalaLoci [142], placement is part of the type system
(placement types) and the type checker can reason about resource location in the application.
Eliom’s [110] placement annotations %client, %server and %shared allow developers to allocate
resources in the program at the granularity of variable declarations. Similarly, Links [34] provides
a client and a server annotation to indicate functions that should be executed on the client or
the server, respectively.

The MT languages above hide the mismatch between the different platforms underlying each tier,
abstracting over data representation, serialization and network protocols, enabling the combination
of code that belongs to different tiers within the same compilation unit. In addition, MT concepts

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:14 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

are reified in the language in the sense that language abstractions enable developers to refer to
tiers explicitly.

4.1.2 Compilers for Multitier Programming. Transparent distribution approaches enable using a
single language for different tiers and support compilation to tier-specific code, but do not provide
specific abstractions for MT programming. Splitting a program into different tiers based on security
concerns (Jif/split [151], Fission [56]) adopts information flow control techniques to ensure that
private data does not leak to untrusted tiers. Distributed Orc [130] automatically optimizes the
distribution of values at runtime to minimize communication cost.

Approaches that add compilation to a different platform for existing general-purpose languages
have been proposed by different vendors and organizations, targeting various languages and
programming platforms, e.g., the JSweet Java to JavaScript compiler, the Bridge.NET and the
SharpKit C# to JavaScript compilers and the Scala.js Scala to JavaScript compiler. Haxe [46] is a
cross-platform toolkit based on the statically typed object-oriented Haxe language that compiles
to JavaScript, PHP, C++, Java, C#, Python and Lua. The statically typed language Kotlin [66] for
multi-platform applications targets the JVM, Android, JavaScript and native code. Such approaches
do not support automatic separation into tiers ś the developer has to keep the code for different tiers
separate, e.g., in different folders. Remote communication APIs are provided by libraries depending
on the target platform (e.g., TCP sockets or HTTP). Such solutions are the most pragmatic: They
do not break compatibility with tooling ś if already available ś and provide a programming model
that is quite close to traditional programming. Developers do not significantly change the way they
reason about coding distributed applications and do not need to learn completely new abstractions.

Domain-specific languages take over tasks specific to (certain types of) distributed applications,
such as constructing a client-side user interface based on a given data model. Richard-Foy et al. [115]
propose a Scala EDSL that captures common tasks performed in web applications, e.g., defining
DOM fragments. Their approach allows specializing code generation depending on the target

Table 3. Placement Strategy

Language Placement Strategy

Automatic Explicit

Hop/Hop.js · staged

Links · partitioned

Opa partitioned ·

StiP.js partitioned ·

Ur/Web · staged

Eliom/Ocsigen · staged

Gavial · partitioned

AmbientTalk/R · partitioned

ML5 · partitioned

ScalaLoci · partitioned

WebSharper · partitioned

Haste · partitioned

Fun · partitioned

Koka · partitioned

Multi-Tier Calculus partitioned ·

Swift partitioned ·

Volta · partitioned

J-Orchestra · partitioned

Meteor · partitioned

GWT · partitioned

platform, e.g., using the Scala XML library when
compiling to Java bytecode or using the browser’s
DOM API when compiling to JavaScript. Mobl [59]
is a DSL for building mobile web applications in
a declarative way providing language features for
specifying the data model, the application logic
and the user interface. Mobl compiles to a combina-
tion of different target languages, HTML, CSS and
JavaScript. It, however, targets the client side only.

4.2 Placement Strategy

The placement strategy is the approach adopted
by MT languages to assign data and computations
in the program to the hosts comprising the dis-
tributed system. Table 3 classifies MT languages
into approaches where placement is done auto-

matically and approaches where placement is ex-
plicitly specified by the developer. Even for MT so-
lutions with automatic placement, the assignment
to different hosts is an integral part of the program-
ming model. For example, specific parts of the code
have a fixed placement (e.g., interaction with the

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:15

web browser’s DOM must be on the client) or the developer is given the ability to use location
annotations to enforce a certain placement.

The code that is assigned to different places is either (1) partitioned (statically or dynamically)
into different programs or (2) separated into different stages, where the execution of one stage
generates the next stage and can inject values computed in the current stage into the next one.
When accessing a value of another partition in approach (1), the value is looked up remotely over
the network and the local program continues execution with the remote value after receiving
it. For handling remote communication asynchronously, remote accesses are either compiled to
continuation-passing style or asynchronicity is exposed to the developer using local proxy objects
such as futures. Using approach (2) for web applications, the server stage runs and creates the
program to be sent to the client. When generating the client program, references to server-side
values are spliced into client code, i.e., the client program that is sent already contains the injected
server-side values. Such staged execution reduces communication overhead since server-side values
accessed by the client are already part of the generated client program.

In the case of web applications, as response to an HTTP request, the server delivers the program
to the client which executes it in the browser. For MT languages that do not target web applications,
the programs that result from the splitting start independently on different hosts and connect to
other parts upon execution, e.g., using peer-to-peer service discovery in AmbientTalk/R.

We first consider placement based on the different functionalities of the application logic which
naturally belong to different tiers. Then we present approaches where there are multiple options for
placement and the MT programming framework assigns functionalities to tiers based on various
criteria such as performance optimization and privacy.

4.2.1 Placement Based on Functional Properties. In most MT languages, the placement of each func-
tionality is fully defined by the programmer by using an escaping/quoting mechanism (Hop [119],
Ur/Web [30], Eliom [110]), annotations (Links [34]) or a type-level encoding (ML5 [96], Gavial [114],
ScalaLoci [142]). Placement allows separate parts of the MT program to execute on different hosts.
The compile-time separation into different components either relies on (whole-)program analysis
(Ur/Web, ML5) or supports modular separation (Eliom, ScalaLoci), where each module can be
individually split into multiple tiers. On the other hand, dynamic separation is performed at run
time (Links, Hop).

When the placement specification is incomplete there is room for alternative placement choices,
in which case slicing [144] detects the dependencies between the fragments manually assigned
by developers and the rest of the code base, ultimately determining the splitting border. For
example, in StiP.js [103, 104], code fragments are assigned to a tier based on annotations, then
slicing uncovers the dependencies. This solution allows developing MT web applications in existing
general-purpose languages as well as retaining compatibility with development tools. In the slicing
process, placement can be constrained not only explicitly, but also based on values’ behavior, e.g.,
inferring code locations using control flow analysis or rely on elements for which the location is
known (e.g., database access takes place on the server, interaction with the DOM takes place on
the client) [33, 105, 111]. This complicates the integration into an existing language, especially in
presence of effects, and is less precise than explicit annotations ś hindering, e.g., the definition of
data structures that combine fragments of client code and other data [110].

4.2.2 Placement Strategies. For the functionalities that can execute both on the client and on the
server, MT approaches either place unannotated code both on the client and on the server (e.g.,
Links [34], Opa [111], ScalaLoci [142]) or compute the placement that minimizes the communication
cost between tiers (e.g., Distributed Orc [130]). Neubauer and Thiemann [98, 99] allow a propagation
strategy to produce different balances for the amount of logic that is kept on the client and on

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:16 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

Table 4. Placement Approach

Language Placement Specification Approach for given Granularity

Expression Binding Block Top-Level Binding Top-Level Block Class/Module File

Hop/Hop.js escaping/quoting · · annotation · · ·

Links · · · annotation · · ·

Opa · annotation and · · · · ·

static analysis

StiP.js · · · · annotation and · ·

static analysis

Ur/Web escaping/quoting · · dedicated · · ·

Eliom/Ocsigen escaping/quoting · · annotation · annotation ·

Gavial type · · · · · ·

AmbientTalk/R · · · · · dedicated ·

ML5 type · · · · · ·

ScalaLoci type · · type · · ·

WebSharper · · · annotation · annotation ·

Haste type · · · · · ·

Fun · · · dedicated · · ·

Koka · · · type · · ·

Multi-Tier Calculus static analysis · · · · · ·

Swift static analysis · · · · · ·

Volta · · · · · annotation ·

J-Orchestra · · · · · external ·

Meteor · · dynamic run · · · directory
time check

GWT · · · · · · directory

the server, starting the propagation from some predefined operators whose placement is fixed.
The propagation strategy uses a static analysis based on location preferences and communication
requirements to optimize performance (contrarily to many MT approaches where the choice is left
to the programmer). Jif/split [151] considers placement based on security concerns: Protection of
data confidentiality is the principle to guide the splitting. The input is a program with security
annotations and a set of trust declarations to satisfy. The distributed output program satisfies all
security policies. As a result, programmers can write code that is agnostic to distribution, but
features strong guarantees on information flow. Similarly, Swift [32] also partitions programs based
on security labels, but focuses on the Web domain, where the trust model assumes a trusted server
that interacts with untrusted clients.
An exception to the approaches above ś which all adopt a compile time splitting strategy ś is

Fission [56], which uses information flow control to separate client and server tiers at run time. The
dynamic approach allows supporting JavaScript features that are hard to reason about statically,
such as eval, as well as retaining better compatibility with tooling.

4.3 Placement Specification and Granularity

Placement specification in MT languages is defined at different granularity levels. Languages that
allow composing code belonging to different hosts in the same compilation unit follow various
approaches to specify the execution location. Table 4 classifies the MT languages based on the
placement specification approach (Section 4.3.1) and the granularity given in the first row (Sec-
tion 4.3.2). For example, Hop.js allows escaping arbitrary expressions to delimit code of a different
tier. Links uses annotations on top-level bindings to specify the tier to which a binding belongs.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:17

4.3.1 Placement Specification. We identified the following strategies used by MT languages to
determine placement:

Dedicated tier assignment always associates certain language constructs to a tier, e.g., top-level
name bindings are always placed on the server or every class represents a different tier.

Annotations specify the tier to which the annotated code block or definition belongs, driving
the splitting process.

Escaping/quoting mechanisms are used when the surrounding program is placed on a specific
tier, e.g., the server, and nested expressions are escaped/quoted to delimit the parts of the
code that run on another specific tier, e.g., the client.

Types of expressions determine the tier, making placement part of the type system.
Static analysis determines the tier assignment at compile-time based on functional properties

of the code (such as access to a database or access to the DOM of the webpage).
Dynamic run time checks allow developers to check at run time which tier is currently

executing the running code, and select the tier-specific behavior based on such condition.

The following strategies are used by approaches lacking language-level support for placement:

External configuration files assign different parts of the code (such as classes) to different tiers.
Different directories are used to distinguish among the files containing the code for different

tiers.

Links [34] and Opa [111] provide dedicated syntax for placement (e.g., fun f() client and
fun f() server in Links). Volta [87] relies on the C# base language’s custom attribute annotations
to indicate the placement of abstractions (e.g., [RunAt("Client")] class C). WebSharper [14] uses
a JavaScript F# custom attribute to instruct the compiler to translate a .NET assembly, a module,
a class or a class member to JavaScript (e.g., [<JavaScript>] let a = . . .). Stip.js [103] interprets
special forms of comments (e.g., /* @client */ {. . .} and /* @server */ {. . .}). While MT languages
usually tie the placement specification closely to the code and define it in the same source file,
approaches like J-Orchestra [131], require programmers to assign classes to the client and server
sites in an XML configuration file.

ML5 [96] captures the placement explicitly in the type of an expression. For example, an expres-
sion expr of type string @ server can be executed from the homeworld using from server get expr.
The placement of every expression is determined by its type and the compiler ensures type-safe
composition of remote expressions through from . . . get. Similarly, in ScalaLoci [142], a binding
value of type String on Server can be accessed remotely using value.asLocal. Haste [44] also
features a type-based placement specification using monadic computations by wrapping client
and server code into different monads. Koka [78] uses a type and effect system to capture which
functions can only be executed on the client and which functions can only be executed on the
server, preventing cross-tier access without explicitly sending and receiving messages.

4.3.2 Placement Granularity. On a different axis, existing MT approaches cover a wide granularity
spectrum regarding the abstractions for which programmers can define placement: files (e.g.,
GWT [68]), classes (e.g., Volta [87], J-Orchestra [131]), top-level code blocks (e.g., Stip.js [103]),
top-level bindings (e.g., Links [34]), (potentially nested) blocks (e.g., Meteor [128]), bindings (e.g.,
Opa [111]) and (sub)expressions (e.g., Eliom [110], ML5 [96]). Specification granularities supported
by a language are not mutually exclusive, e.g., ScalaLoci [142] supports placed top-level bindings
and nested remote blocks. In Hop [119] and Ur/Web [30], which target web applications, where
the execution of server code is triggered by an HTTP client request, all top-level bindings define
server-side code and nested client-side code is escaped/quoted at the granularity of expressions.
Eliom [110] supports both nested client expressions and annotated top-level client/server bindings.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:18 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

Table 5. Communication Abstractions

Language Communication Abstraction

Remote Message Publishś Reactive Shared
Procedures Passing Subscribe Programming State

Hop/Hop.js
𝑐→𝑠

· ·

Links
𝑡,𝑐

 · · ·

Opa
𝑡

 · · ·

StiP.js
𝑡

· ·

Ur/Web
𝑐→𝑠

𝑠→𝑐

· · ·

Eliom/Ocsigen # # · # ·

Gavial · · · ·

AmbientTalk/R · · ·

ML5 · · · ·

ScalaLoci · · ·

WebSharper · · · ·

Haste
𝑐→𝑠

· · · ·

Fun · · · ·

Koka · · · ·

Multi-Tier Calculus
𝑡

· · · ·

Swift
𝑡

· · · ·

Volta
𝑡

· · · ·

J-Orchestra
𝑡

· · · ·

Meteor # · # · #

GWT # · · · ·

 Language support

Support through
libraries

𝑐→𝑠 From client
to server only

𝑠→𝑐 From server
to client only

𝑡 Fully transparent
remote procedure

𝑐 Client-initiated

The approach most akin to traditional languages is to force programmers to define functionali-
ties that belong to different hosts in separated compilation units such as different Java packages
(GWT [68]) or different directories (Meteor [128]). An even coarser granularity is distribution at the
software component level. R-OSGi [112] is an OSGi extension where developers specify the location
of remote component loading and Coign [63] extends COM to automatically partition and distrib-
ute binary applications. These solutions, however, significantly depart from the language-based
approach of MT programming.

4.4 Communication Abstractions

MT approaches provide dedicated abstractions intended to simplify implementing remote com-
munication, which differ considerably among languages. Table 5 provides an overview over these
abstractions. Languages either support specific forms of communication only in a single direction
ś either from client to server or from server to client ś or support bidirectional communication
(potentially requiring the client to initiate the communication). MT languages also differ in whether
they make remote communication explicit (and with it, the associated performance impact) or
completely transparent to the developer.

Remote communicationmechanisms are either integrated into the language using convenient syn-
tactic constructs (e.g., from . . . get expr in ML5 [96], value.asLocal in ScalaLoci [142] or rpc fun
in Ur/Web [30]), or are made available through the standard library that comes with the language
(e.g., webSocket.send(message) in Hop.js [120] or service.fun(new AsyncCallback() {. . .}) in
GWT [68] or Meteor.call("fun", function(error, result) {. . .}) in Meteor [128]). We list the
communication approaches found in the respective MT languages in Table 5. Developers can,
however, implement such communication mechanisms that are not supported out-of-the-box (by
dedicated language features or as part of the standard library) as an external library, e.g., providing
a library that supports event-based communication based on remote procedure calls or using a

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:19

persistent server (e.g., in Links [34]) to emulate shared data structures. We do not consider such
external solutions here. We identify the following remote communication mechanisms:

Remote procedures are the predominant communication mechanism among MT languages.
Remote procedures can be called in a way similar to local functions ś either completely
transparently or using a dedicated remote invocation syntax ś providing a layer of abstraction
over the network between the call site and the invoked code.

Message passing abstractions are closer to the communication model of the underlying net-
work protocols, where messages are sent from one host to another.

Publishśsubscribe allows tiers to subscribe to topics of their interest and receive the messages
published by other tiers for those topics.

Reactive programming for remote communication defines data flows across tiers through
event streams or time-changing values that upon each change automatically update the
derived reactive values on the remote tiers.

Shared state makes any updates to a shared data structure performed on one tier available to
other tiers accessing the data structure.

MT languages that target the Web domain follow a traditional requestśresponse scheme, where
web pages are generated for each client request and the client interacts with the server by user
navigation. Both Hop [119] and Eliom [110] allow client and server expressions to be mixed. All
server expressions are evaluated on the server before delivering the web page and client expressions
are evaluated on the client. Hop additionally provides traditional clientśserver communication
via asynchronous callbacks, whereas Eliom supports more high-level communication mechanisms
based on reactive programming through libraries.
WebDSL [53], for example, is an external DSL for web applications to specify the data model

and the pages to view and edit data model objects. HTML code is generated for pages, which is
reconstructed upon every client request.

4.4.1 Call-Based communication. MT languages provide communication abstractions for clientś
server interaction not necessarily related to page loading, including RPC-like calls to remote
functions, shared state manipulation or message-passing. Abstracting over calling server-side
services and retaining the result via a local callback, Links [34] allows bidirectional remote function
calls, between client and server. RPC calls in Links, however, hide remote communication concerns
completely which has been criticized because the higher latency is not explicit [67]. In contrast,
Links’ more recent message-passing communication mechanism features explicit send and receive
operations.
In both Ur/Web [30] and Opa [111], server and client can communicate via RPCs or message-

passing channels. Due to the asymmetric nature of clientśserver web applications, Ur/Web follows a
more traditional approach based on RPCs for client-to-server communication and provides channels
for server-to-client communication.

4.4.2 Event-Based Communication. Publishśsubscribe middleware has been used in the context of
loosely coupled mobile devices (AmbientTalk [26, 42]). Hiphop [13], which extends Hop [119] with
synchronous data flows, borrows ideas from synchronous data flow languages, à la Esterel [12]. The
approach provides substantial guarantees on time and memory bounds, at the cost, however, of
significantly restricting expressivity. In ScalaLoci [142], Gavial [113, 114], AmbientTalk/R [42] or
libraries for Eliom [110], tiers expose behaviors (a.k.a. signals) and events in the style of functional
reactive programming to each other.

4.4.3 Distributed Shared State. Meteor [128] provides collections to store JSON-like documents
and automatically propagate changes to the other tier. Similarly, in Fun [145], a language for

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:20 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

real-time web applications, modifications to variables bound to the Global object are automatically
synchronized across clients. MT languages usually support (or even require) a central server
component, enabling shared state via the server as central coordinator that exposes its state to the
clients.

4.5 Formalization of MT Languages

From a formal perspective, MT programming has been investigated in various publications. In this
section, we first present a classification of existing formal models using three analysis directions:
the formalization approach, the proof methods and the properties considered in the formalization.
Finally, we describe the formalizations of MT languages in more details, classifying them according
to the points above.

4.5.1 Techniques and Scope. Existing formal models for MT languages that specify an operational
semantics follow three main approaches: (s1) they formalize how a single coherent MT program

is executed modeling how computation and communication happen in the whole distributed setting
(e.g., with a semantics where terms can be reduced at different locations) [17, 98, 110, 142], (s2) they
specify a splitting transformation that describes how tier-specific programs are extracted from
MT code and they provide an independent reduction model for the split tiers [36, 98, 110] or
(s3) they specify the semantics in terms of an existing calculus [78], i.e., the semantics of a
calculus not specific to MT languages is reinterpreted for MT programming, e.g., different effects
in a type and effect system represent different tiers. Serrano and Queinnec’s [121] continuation-
based denotational semantics is an exception to the operational approach. It disregards concurrent
execution of client and server focusing on a sequential fragment of Hop to model dynamic server-
side client code generation.
Based on the models above, researchers looked at properties including (p1) type soundness

as progress and preservation [17, 78, 98, 142], (p2) behavioral equivalence of the execution
of the source MT program (cf. a1) and the interacting concurrent execution of the tier-specific
programs (cf. a2) [36, 98, 110], and (p3) domain-specific properties that are significant in a
certain context such as secure compilation [11], or performance for data access [27], as well as
domain-specific properties, such as host reachability in software defined networks [97]. Crucially,
the fact that MT languages model client and server together enables reasoning about global data
flow properties such as privacy. The small-step semantics of Hop [17] has been used to model the
browser’s same-origin policy and define a type system that enforces it. A similar approach has been
proposed to automatically prevent code injection for web applications [86]. Splitting in Swift [32]
is guaranteed to keep server-side private information unreachable by client-side programs.

Researchers adopted proof methods that belong to two categories: (m1) perform the proofs directly
on the semantics that describes the whole system and/or the splitting transformation [17, 36, 98,
110, 142] or (m2) leverage proved properties of an existing calculus [34, 78].

4.5.2 Formalizations. Table 6 provides a classification of the formalizations of MT languages. For
the discussion, we leave out languages lacking a formal development. Most formalizations model
MT applications as single coherent programs, providing soundness proofs for the MT language.
Another common approach for reasoning about the behavior of MT code is to formally define
the splitting transformation that separates MT code into its tier-specific parts to show behavioral
equivalence of the original MT program and the split programs after the transformation. In the case
of Hop [17] formal reasoning focuses on properties specific to the Web domain, e.g., conformance
of MT programs to the browser’s same-origin policy. Koka’s effect system [78] can be used to
implement different tiers in the same compilation unit. The sound separation into different tiers in
Koka follows from the soundness of the effect system.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:21

Table 6. Formalization Approach

Language Proved Properties

Type Soundness Behavioral Equivalence Domain-Specific

of Coherent MT Program based on Existing Calculus of Splitting Transformation Properties

Hop/Hop.js denotational · · operational
(same-origin policy)

Links · · operational ·

Eliom/Ocsigen operational · operational ·

ScalaLoci operational · · ·

Multi-Tier Calculus operational · operational ·

Koka · operational · ·

The seminal work by Neubauer and Thiemann [98] presents an MT calculus for web applications.
A static analysis on a simply-typed call-by-value lambda calculus determines which expressions
belong to each location and produces the assignment of the code to the locations, which results in
a lambda calculus with annotated locations. A further translation to an MT calculus (s1) explicitly
models opening and closing of communication channels. Type soundness for the MT calculus is
proved (p1). The splitting transformation (s2), which extracts a program slice for each location, is
proved to generate only valid programs wrt. the source (p2). The transformed program is considered
valid if it is weakly bisimilar [100] to the source program, i.e, if it performs the same operations
with the same side effects and the operations are in the same order (m1).

Boudol et al. provide a small-step operational semantics for Hop [17], which covers server-
side and client-side computations, concurrent evaluation of requests on the server and DOM
manipulation (s1). For Hop, based on Scheme, which does not feature a static type system, the
authors define a type system for łrequest-safetyž (p1), which ensures that client code will never
request server-side services that do not exist. Request-safety is proven sound (m1).
The formalization of the Links programming language [34] is based on RPC calculus [31, 36]

(m2) ś an extension of lambda calculus ś which models location awareness for stateful clients and
stateless servers. The RPC calculus is transformed (s2) into a client program and a server program
in the client/server calculus. The transformation is proved to be correct and complete (m1). Further,
a location-aware calculus, which is the the theoretical foundation for the Links programming
language, and a translation to RPC calculus is provided (p2). A simulation that proves that the
behavior of the transformed program in the client/server calculus conforms to the behavior of the
source program in location-aware calculus is left to future work.
Eliom [110] is formalized as an MT extension of core ML. The authors provide an operational

semantics that formalizes the execution for an Eliom program (s1) and provide a translation (s2)
separating an Eliom program into server and client ML programs. Besides subject reduction (p1), the
authors prove the equivalence of the high level MT semantics with the semantics of the compiled
client and server languages after splitting by simulation (p2). The simulation shows that, for any
given source program, every reduction can be replayed in the transformed programs (m1). Eliom
separates type universes for client and server, allowing the type system to track which values
belong to which side. Eliom, however, leaves out interactive behavior, formalizing only the creation
of a single page.
In ScalaLoci’s formal semantics [142], the reduction relation is labeled with the distributed

components on which a term is reduced (s1). The authors formulate soundness properties for the
encoding of placement at the type level, e.g., that terms are reduced on the instances of the peers
on which they are placed (p1). The type system is proven sound (m1).

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:22 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

Table 7. Distribution Topologies

Language Distribution Topology

ClientśServer ClientśServer + Peer-to-Peer Specifiable
Database

Hop/Hop.js · · ·

Links · #
1

·

Opa · · ·

StiP.js · · ·

Ur/Web · · ·

Eliom/Ocsigen · · ·

Gavial · · ·

AmbientTalk/R · · ·

ML5 · · #

ScalaLoci · · ·

WebSharper · · ·

Haste · · ·

Fun · · ·

Koka · · #

Multi-Tier Calculus · · #

Swift · · ·

Volta · · ·

J-Orchestra · · ·

Meteor · · ·

GWT · · ·

 Supported

Support conceptually
possible, but not
supported by the
provided examples or
the implementation

1 Client-to-client
communication
transparently through
central server

Using the Koka language, it is possible to define a splitting function for the server and client parts
of a program [78] based on Koka’s ability to separate effectful computations (s3), which guarantees
type soundness for the split programs (p1), e.g., an application can define a client effect consisting
of DOM accesses and a server effect consisting of I/O operations (m2).

4.6 Distribution Topologies

Table 7 gives an overview over the distribution topologies supported by MT languages. The majority
of MT approaches specifically targets clientśserver applications in the Web domain. Besides the
client and the server tier, Links [34], Opa [111] and Ur/Web [30] also include language-level support
for the database tier. Other MT languages require the use of additional libraries to access a database
(e.g., Hop [119] or Eliom [110]).

Only few approaches target other distribution topologies: AmbientTalk [42] focuses on mobile
ad hoc networks and allows services to be exported and discovered in a peer-to-peer manner,
where peers are loosely coupled. ML5 [96] is an MT language which adopts the idea of possible
worlds from models of modal logic to represent the different tiers in the distributed system. Worlds
are used to assign resources to different tiers. Although this approach is potentially more general
than the clientśserver model allowing for the definition of different tiers, the current compiler and
runtime target web applications only. Similarly, in the MT calculus by Neubauer and Thiemann [98],
locations are members of a set of location names that is not restricted to client and server. Their
work, however, focuses on splitting code between a client and as server. Session-typed channels in
Links [34] provide the illusion of client-to-client communication, but messages are routed through
the server. In J-Orchestra [131], developers can define different interconnected network sites in a
configuration file.
ScalaLoci [142] allows developers to specify a distributed system’s topology by declaring

types representing the different components and their relation. Thus, developers can define custom

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:23

architectural schemes (i.e., not only clientśserver) and specify various computing models (e.g.,
pipelines, rings, or masterśworker schemes).

5 DISCUSSION AND OUTLOOK

In this section, we discuss open issues in MT programming and suggest future research directions.

5.1 Generic Distributed Systems

A significant limitation of most existing MT research languages (e.g., [30, 34, 103, 110, 111, 114,
119]) is that they do not address generic distributed systems but consider only the clientśserver
architecture with clients of the same kind, mostly in the limited setting of web applications. Yet,
many distributed systems require more complex architectures and configurations with different
kinds of components ś different types of clients, coordinators (e.g., in a masterśworker scheme),
backup nodes and logging services. The ScalaLoci MT language [142] contributes to this area with
means to specify an architecture based on peer types, thus, supporting generic distributed systems,
whose architecture can be defined by the developer.

It is likely that the lack of support for generic distributed architectures in most MT languages has
limited the investigation of some aspects that are significant in distributed systems. For example,
current MT languages consider only one level of consistency [139] (e.g., causal consistency), the one
guaranteed ś often implicitly ś by the underlying communication system. However, in distributed
applications, developers need to be able to choose among different levels of consistency and the
safety/performance trade-off they offer. Further, existing MT languages do not provide dedicated
language abstractions for designing fault-tolerant systems (e.g., actors’ supervision trees). This
state of things is motivated by the context where MT programming has been applied so far, the
Web, where a permanent client failure cannot be recovered anyway.

5.2 Failures

In a distributed setting, including the Web, hosts may fail or disconnect without notice. In particular,
for web applications, clients may close the browser at any point in time. To improve resiliency
to faults, remote communication in MT languages is non-blocking, i.e., the program continues
execution even when the remote communication channel is interrupted. Beyond that, some MT
languages provide primitives that developers can use to detect disconnection, such as dedicated
notification events, callbacks and exceptions.

Calling a service in Hop or GWT, for example, either invokes a success callback or a failure call-
back. In Stip.js, failure handling is defined via annotations (i.e., @defineHandler and @useHandler).
Links’ remote communication based on session types supports exception handling to deal with
communication failures and disconnections. In ScalaLoci’s event streams, failures are propagated
downstream in a monadic fashion and developers can define failure handlers for upstream operators,
similar to supervisors in actor systems. A special event signals the disconnection of a remote com-
ponent. AmbientTalk provides fault-tolerant asynchronous message passing between distributed
components. Messages sent to a disconnected component are buffered and delivered after the
component reconnects. J-Orchestra allows developers to manually implement error handling by
editing the code after splitting.

5.3 Programming in the Large

Current MT languages do not support dedicated modularization abstractions for programming
in the large, such as module systems [79]. As a result, scalability for MT code bases is an open
research topic, with the risk of severely hindering collaborative development and maintainability.
There are two aspects to consider.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:24 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

First, there is a technical challenge in the compilation process as the splitting into tier-specific
code needs to be modular. For example, Ur/Web [30] supports a module system in the style of ML.
However, Ur/Web does not feature separate compilation of modules since the language relies on
whole-program analysis for slicing the application into client and server programs.

Second, an interesting research direction is to revisit existing modularization mechanisms to
design them in synergy with MT abstractions, allowing the independent specification of placement
and the combination of (multiple) modules through composition mechanisms (e.g., ML functors).
A notable exception to the lack of MT abstractions for programming in the large is the Eliom

language [110]. In the context of Eliom, Radanne and Vouillon propose a module system [109]
based on ML-style modules featuring functors to abstract over other modules. Eliom modules
can contain client or server declarations (annotated as %client and %server). Mixed modules,
defining both client and server code, span over the clientśserver boundary enabling software
modularization along the modules direction as well as abstraction over the two tiers at the same
time. Another example is the ScalaLoci [142] language for generic distributed systems, which
supports a multitier module system [143] that uses abstract peer types to express the distributed
architecture of the (sub)system encapsulated within each module. Developers use such abstract
peer types to specify the placement of values at the type level and compose modules to combine
the different (sub)system’s architectures.

5.4 Controlled Experiments

Controlled experiments allow researchers to study the effect of languages on aspects such as
development time, which cannot be easily inferred from analyzing program code. Unfortunately,
we are not aware of empirical studies or controlled experiments that target MT programming.
There are a number of aspects that can be measured, but a first step may entail an assessment of
the effect of MT on program comprehension.

A promising option in this direction would be to consider exploratory studies such as interviews
and the think-aloud approach [75, 76]. Also, MT programming combines functionalities that
traditionally belong to different compilation units into into the same unit, which should be detectable
with eye-tracking techniques, which have been successfully applied to understand how source code
is inspected, debugged and comprehended by developers [21, 65, 69, 82, 134]. A different perspective
is the effect of the MT paradigm on the cognitive models that developers build regarding software
artifacts, or the the bottom-up model (or situation model) by Letovsky [80].

6 RELATED APPROACHES

In this section, we provide an overview of related research areas that influenced research on MT
programming or share concepts with the MT paradigm.

PGAS Languages. Partitioned global address space languages (PGAS) [40] provide a high-level
programmingmodel for high-performance parallel execution. For example, X10 [28] parallelizes task
execution based on a work-stealing scheduler, enabling programmers to write highly scalable code.
Its programming model features explicit fork/join operations to make the cost of communication
explicit. X10’s sophisticated dependent type system [27] captures the place (the heap partition)
a reference points to. Similar to MT languages, PGAS languages aim at reducing the boundaries
between hosts, adopting a shared global address space to simplify development. The scope of PGAS
languages, however, is very diverse ś they focus on high performance computing in a dedicated
cluster, while MT programming targets clientśserver architectures on the Internet.

Operator Placement. In contrast to explicit placement (e.g., via annotations), the operator place-
ment problem consists of finding the best host on which each operator should be deployed in a

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:25

distributed system according to maximize a certain metric, such as throughput [38, 73] or load [29].
Methods in this field include the creation of overlay networks where operators are assigned to
hosts via random selection [62], network modeling [106] and linear optimization to find the optimal
solution to the constraint problem [25].

Software Architectures. Software architectures [50, 101] organize software systems into compo-
nents and their connections as well as constraints on their interaction. Architecture description
languages (ADL) [88] provide a mechanism for high-level specification and analysis of large soft-
ware systems, for example, to guide architecture evolution. Yet, ADLs are often detached from
implementation languages. ArchJava [3] paved the way for consolidating architecture specifica-
tion and implementation in a single language. However, ArchJava does not specifically address
distributed systems nor MT programming. Some approaches are at the intersection of MT and mod-
eling languages: Hilda [149] is a web development environment for data-driven applications based
on a high-level declarative language similar to UML which automatically partition MT software.

Choreographies. In choreographic programming, a concurrent system is defined as a single com-
pilation unit called choreography, which is a global description of the interactions and computations
of a distributed system’s connected components [74, 93, 141]. Similar to MT programming, the
compiler automatically produces a correct implementation for each component, e.g., as a process
or as a microservice [24]. While MT languages abstract over communication, choreographic pro-
gramming is communication-centric and the expected communication flow among components is
defined explicitly. The compiler is responsible for generating code that strictly abides by this flow.
Choreographic programming’s formal foundations are rooted in process calculi [9]. It has been
used to investigate new techniques on information flow control [85], deadlock-free distributed
algorithms [37] and protocols for dynamic run time code updates for components [107]. Role
parameters in the choreographic language Choral [52] recall ScalaLoci’s abstract peer types [143]:
They can be freely instantiated with different arguments, further allowing for components to
dynamically switch the roles in the distributed system at run time.

Actor Model. The Actor model, initially described by Hewitt [60] and available in popular imple-
mentations such as Erlang OTP [7] and Akka [2], encapsulates control and state into computation
units that run concurrently and exchange messages asynchronously [1]. The decoupling offered
by asynchronous communication and by the no-shared-memory approach enables implementing
scalable and fault-tolerant systems. De Koster et al. [39] classify actor systems into four different
variants: (i) the classic actor model allows for changing the current interface of an actor (i.e., the
messages which an actor can process) by switching between different named behaviors, which
handle different types of messages, (e.g., Rosette [132], Akka [2]), (ii) active objects define a single
entry point with a fixed interface (e.g., SALSA [138], Orleans [22]), (iii) process-based actors are
executed once and run until completion, supporting explicit receive operations during run time (e.g.,
Erlang [7], Scala Actor Library [57]) and (iv) communicating event-loops combine an object heap,
a message queue and an event loop and support multiple interfaces simultaneously by defining
different objects sharing the same message queue and event loop (e.g., E [92]). Actors, however, are
a relatively low-level mechanism to program distributed systems, leaving programmers the manual
work of breaking applications between message senders and message handlers. The survey by de
Boer et al. [16] provides an overview of the current state of research on actors and active object
languages.

Big Data Processing Systems. Part of the success of modern Big Data systems is due to a program-
ming interface that ś similar to MT programming ś allows developers to define components that
run on different hosts in the same compilation unit, with the framework adding communication

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:26 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

and scheduling. This class of systems includes batch processing frameworks like Hadoop [41] and
Spark [150], as well as stream processing systems like Flink [4] and Storm [127]. Since queries may
process datasets that span multiple data centers and minimizing the traffic is crucial, approaches like
Silos [72] offer abstractions that group nodes belonging to the same location so that the scheduler
can minimize cross-data-center data transfer. Yet, in Big Data systems, the language semantics is
visibly different, for example mutable shared variables are transformed in non-shared separated
copies.

Language Integration for Database Queries. Properly integrating query languages into general-
purpose languages is a long-standing research problem [8]. Compiling embedded queries into SQL
was pioneered by the Kleisli system [148]. LINQ [133] is a language extension based on Kleisli’s
query compilation technique to uniformly access different data sources such as collections and
relational databases. The Links [34] MT language also relies on this technique for providing access
to the database tier. Recent approaches for embedding database queries, such as JReq [64], Ferry [55],
DBPL [118], Slick [124] or Quill [108], also follow a functional approach without object-relational
mapping.

Multi-Stage Programming. Multi-stage programming splits program compilation into a number
of stages, where the execution of one stage generates the code that is executed in the next stage.
MetaML [129] andMetaOCaml [23] provide a quasi-quotation mechanism that is statically scoped to
separate stages syntactically. Quoted expressions are not evaluated immediately but they generate
code to be executed in the next stage. The Hop [119] MT language uses multi-stage programming to
construct client code at the server side. Instead of using syntactic quotations, lightweight modular
staging [117] employs a staging approach based on types, combining staged code fragments with
strong guarantees on well-formedness and type soundness. Using lightweight modular staging
with the Scala-virtualized modified Scala compiler [95], also enables overloading Scala language
constructs such as loops and control structures.

Heterogeneous Computing. In heterogeneous computing, distributed systems consist of different
kinds of processing devices, supporting different specialized processing features. The OpenCL
standard [70] for implementing systems across heterogeneous platforms is rather low-level, re-
quiring the programmer to be aware of the specific hardware, e.g., specifically redesigning serial
algorithms into parallel ones. Approaches for improving programming heterogeneous systems
include (i) compiler directives to offload computations to specialized processing units, indepen-
dent of specific hardware characteristics [6], (ii) domain-specific embeddings for general-purpose
languages [18, 77, 140] abstracting over low level details, such as compute kernel execution, and
(iii) higher level programmingmodels that provide primitives for a predefined set of operations [146].

Domain-Specific Languages. Several survey papers are available in the literature that provide an
extensive overview of DSLs [89, 126, 135, 136]. Wile [147] provides a compendium of lessons learnt
on developing domain-specific languages providing empirically derived guidelines for constructing
and improving DSLs. So called fourth generation programming languages ś following third genera-
tion hardware-independent general-purpose languages ś are usually DSLs that provide higher levels
of abstraction for a specific domain, such as data management, analysis and manipulation [47, 71].

Programming Languages for Distributed Systems. MT programming belongs to a long tradition of
programming language design for distributed systems with influential distributed languages like
Argus [84], Emerald [15], Distributed Oz [58, 137], Dist-Orc [5] and Jolie [94]. More recently, there
have been contributions to specific aspects in the design of programming languages that concern

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:27

the support for distributed systems, such as cloud types to ensure eventual consistency [19], conflict-
free replicated data types (CRDT) [123], language support for safe distribution of computations [91]
and fault tolerance [90], as well as programming frameworks for mixed IoT/Cloud development,
such as Ericsson’s Calvin [102].

7 CONCLUSION

In this paper, we provide an overview of MT languages, a programming approach which combines
the functionalities that belong to different tiers into the same compilation unit, delegating injection
of communication code and generation of the deployment units to the compiler. We provide an
overview of the existing solutions, discuss their positioning in the design space, including placement
strategy, placement specification and granularity, degree of MT programming, communication
abstractions, formalization, and supported architectures.
We hope that this paper can help researchers to orient themselves in the landscape of MT

programming design as well as encourage future development of MT languages.

8 ACKNOWLEDGEMENTS

We would like to thank Simon Fowler, Manuel Serrano, Gabriel Radanne and Adam Chlipala for
the feedback they provided on this manuscript, concerning (but not limited to) the Links language,
the Hop and the Hop.js languages, the Eliom language and the Ur/Web language, respectively.

REFERENCES

[1] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA, USA.

[2] Akka. 2009. http://akka.io/. Accessed 2020-05-05.

[3] Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: Connecting Software Architecture to Imple-

mentation. In Proceedings of the 24th International Conference on Software Engineering (Orlando, FL, USA) (ICSE ’02).

ACM, New York, NY, USA, 187ś197. https://doi.org/10.1145/581339.581365

[4] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian Hueske, Arvid Heise, Odej

Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax,

Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014. The Stratosphere Platform for Big

Data Analytics. The VLDB Journal 23, 6 (Dec. 2014), 939ś964. https://doi.org/10.1007/s00778-014-0357-y

[5] Musab AlTurki and José Meseguer. 2010. Dist-Orc: A Rewriting-based Distributed Implementation of Orc with Formal

Analysis. In Proceedings First International Workshop on Rewriting Techniques for Real-Time Systems (Longyearbyen,

Norway) (RTRTS ’10). 26ś45. https://doi.org/10.4204/EPTCS.36.2

[6] José M. Andión, Manuel Arenaz, François Bodin, Gabriel Rodríguez, and Juan Touriño. 2016. Locality-Aware Automatic

Parallelization for GPGPU with OpenHMPP Directives. International Journal of Parallel Programming 44, 3 (June

2016), 620ś643. https://doi.org/10.1007/s10766-015-0362-9

[7] Joe Armstrong. 2010. Erlang. Commun. ACM 53, 9 (Sept. 2010), 68ś75. https://doi.org/10.1145/1810891.1810910

[8] Malcolm P. Atkinson and O. Peter Buneman. 1987. Types and Persistence in Database Programming Languages.

Comput. Surveys 19, 2 (June 1987), 105ś170. https://doi.org/10.1145/62070.45066

[9] J. C. M. Baeten. 2005. A Brief History of Process Algebra. Theoretical Computer Science 335, 2ś113 (May 2005), 131ś146.

https://doi.org/10.1016/j.tcs.2004.07.036

[10] Vincent Balat. 2006. Ocsigen: Typing Web Interaction with Objective Caml. In Proceedings of the 2006 Workshop on

ML (Portland, OR, USA) (ML ’06). ACM, New York, NY, USA, 84ś94. https://doi.org/10.1145/1159876.1159889

[11] Ioannis G. Baltopoulos and Andrew D. Gordon. 2009. Secure Compilation of a Multi-TierWeb Language. In Proceedings

of the 4th International Workshop on Types in Language Design and Implementation (Savannah, GA, USA) (TLDI ’09).

ACM, New York, NY, USA, 27ś38. https://doi.org/10.1145/1481861.1481866

[12] Gérard Berry and Georges Gonthier. 1992. The Esterel Synchronous Programming Language: Design, Semantics,

Implementation. Science of Computer Programming 19, 2 (Nov. 1992), 87ś152. https://doi.org/10.1016/0167-6423(92)

90005-V

[13] Gérard Berry, Cyprien Nicolas, and Manuel Serrano. 2011. HipHop: A Synchronous Reactive Extension for Hop. In

Proceedings of the 1st ACM SIGPLAN International Workshop on Programming Language and Systems Technologies

for Internet Clients (Portland, OR, USA) (PLASTIC ’11). ACM, New York, NY, USA, 49ś56. https://doi.org/10.1145/

2093328.2093337

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

http://akka.io/
https://doi.org/10.1145/581339.581365
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.4204/EPTCS.36.2
https://doi.org/10.1007/s10766-015-0362-9
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/62070.45066
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1145/1159876.1159889
https://doi.org/10.1145/1481861.1481866
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/2093328.2093337
https://doi.org/10.1145/2093328.2093337

81:28 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

[14] Joel Bjornson, Anton Tayanovskyy, and Adam Granicz. 2010. Composing Reactive GUIs in F# Using WebSharper. In

Proceedings of the 22nd International Conference on Implementation and Application of Functional Languages (Alphen

aan den Rijn, The Netherlands) (IFL ’10). Springer-Verlag, Berlin, Heidelberg, 203ś216. https://doi.org/10.1007/978-3-

642-24276-2_13

[15] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy. 2007. The Development of the Emerald

Programming Language. In Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages

(San Diego, California) (HOPL III). ACM, New York, NY, USA, 11:1ś11:51. https://doi.org/10.1145/1238844.1238855

[16] Frank de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crystal Chang Din, Einar Broch

Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-Reyes, and Albert Mingkun Yang. 2017. A Survey of

Active Object Languages. Comput. Surveys 50, 5, Article 76 (Oct. 2017), 39 pages. https://doi.org/10.1145/3122848

[17] Gérard Boudol, Zhengqin Luo, Tamara Rezk, and Manuel Serrano. 2012. Reasoning about Web Applications: An

Operational Semantics for Hop. ACM Transactions on Programming Languages and Systems 34, 2, Article 10 (June

2012), 40 pages. https://doi.org/10.1145/2220365.2220369

[18] Jens Breitbart. 2009. CuPP ś A Framework for Easy CUDA Integration. In Proceedings of the 2009 IEEE International

Symposium on Parallel & Distributed Processing (Rome, Italy) (IPDPS ’09). IEEE Computer Society, Washington, DC,

USA, 8. https://doi.org/10.1109/IPDPS.2009.5160937

[19] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. 2012. Cloud Types for Eventual

Consistency. In Proceedings of the 26th European Conference on Object-Oriented Programming (Beijing, China) (ECOOP

’12). Springer-Verlag, Berlin, Heidelberg, 283ś307. https://doi.org/10.1007/978-3-642-31057-7_14

[20] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. 1996. Pattern-Oriented Software

Architecture: A System of Patterns. Vol. 1. John Wiley & Sons.

[21] Teresa Busjahn, Carsten Schulte, Bonita Sharif, Simon, Andrew Begel, Michael Hansen, Roman Bednarik, Paul Orlov,

Petri Ihantola, Galina Shchekotova, and Maria Antropova. 2014. Eye Tracking in Computing Education. In Proceedings

of the Tenth Annual Conference on International Computing Education Research (Glasgow, Scotland, United Kingdom)

(ICER ’14). ACM, New York, NY, USA, 3ś10. https://doi.org/10.1145/2632320.2632344

[22] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud

Computing for Everyone. In Proceedings of the 2nd ACM Symposium on Cloud Computing (Cascais, Portugal) (SOCC

’11). ACM, New York, NY, USA, Article 16, 14 pages. https://doi.org/10.1145/2038916.2038932

[23] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Implementing Multi-Stage Languages Using

ASTs, Gensym, and Reflection. In Proceedings of the 2nd International Conference on Generative Programming and

Component Engineering (Erfurt, Germany) (GPCE ’03). Springer-Verlag, Berlin, Heidelberg, 57ś76. https://doi.org/doi.

org/10.1007/978-3-540-39815-8_4

[24] Marco Carbone and Fabrizio Montesi. 2013. Deadlock-Freedom-by-Design: Multiparty Asynchronous Global Program-

ming. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(Rome, Italy) (POPL ’13). ACM, New York, NY, USA, 263ś274. https://doi.org/10.1145/2429069.2429101

[25] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli. 2016. Optimal Operator Placement for

Distributed Stream Processing Applications. In Proceedings of the 10th ACM International Conference on Distributed

and Event-Based Systems (Irvine, CA, USA) (DEBS ’16). ACM, New York, NY, USA, 69ś80. https://doi.org/10.1145/

2933267.2933312

[26] Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and Wolfgang De Meuter. 2010. Loosely-coupled

Distributed Reactive Programming in Mobile Ad Hoc Networks. In Proceedings of the 48th International Conference

on Objects, Models, Components, Patterns (Málaga, Spain) (TOOLS ’10). Springer-Verlag, Berlin, Heidelberg, 41ś60.

https://doi.org/10.1007/978-3-642-13953-6_3

[27] Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. 2008. Type Inference for Locality Analysis of

Distributed Data Structures. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (Salt Lake City, UT, USA) (PPoPP ’08). ACM, New York, NY, USA, 11ś22. https://doi.org/10.1145/

1345206.1345211

[28] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph

von Praun, and Vivek Sarkar. 2005. X10: An Object-Oriented Approach to Non-Uniform Cluster Computing. In

Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications (San Diego, CA, USA) (OOPSLA ’05). ACM, New York, NY, USA, 519ś538. https://doi.org/10.1145/

1094811.1094852

[29] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur Çetintemel, Ying Xing, and Stan

Zdonik. 2003. Scalable Distributed Stream Processing. In Proceedings of the First Biennial Conference on Innovative

Data Systems Research (Asilomar, CA, USA) (CIDR ’03). http://www-db.cs.wisc.edu/cidr/cidr2003/program/p23.pdf

Accessed 2020-05-05.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1007/978-3-642-24276-2_13
https://doi.org/10.1007/978-3-642-24276-2_13
https://doi.org/10.1145/1238844.1238855
https://doi.org/10.1145/3122848
https://doi.org/10.1145/2220365.2220369
https://doi.org/10.1109/IPDPS.2009.5160937
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1145/2632320.2632344
https://doi.org/10.1145/2038916.2038932
https://doi.org/doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1007/978-3-642-13953-6_3
https://doi.org/10.1145/1345206.1345211
https://doi.org/10.1145/1345206.1345211
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p23.pdf

A Survey of Multitier Programming 81:29

[30] Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming the Web. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). ACM, New York,

NY, USA, 153ś165. https://doi.org/10.1145/2676726.2677004

[31] Kwanghoon Choi and Byeong-Mo Chang. 2019. A Theory of RPC Calculi for ClientśServer Model. Journal of

Functional Programming 29 (2019). https://doi.org/10.1017/S0956796819000029

[32] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin Zheng. 2007. Secure

Web Applications via Automatic Partitioning. ACM SIGOPS Operating Systems Review 41, 6 (Oct. 2007), 31ś44.

https://doi.org/10.1145/1323293.1294265

[33] Stephen Chong, K. Vikram, and Andrew C. Myers. 2007. SIF: Enforcing Confidentiality and Integrity in Web

Applications. In Proceedings of 16th USENIX Security Symposium (Boston, MA, USA) (SS ’07). USENIX Association,

Berkeley, CA, USA, Article 1, 16 pages. http://usenix.org/events/sec07/tech/full_papers/chong/chong.pdf Accessed

2020-05-05.

[34] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming without Tiers. In

Proceedings of the 5th International Conference on Formal Methods for Components and Objects (Amsterdam, The

Netherlands) (FMCO ’06). Springer-Verlag, Berlin, Heidelberg, 266ś296. https://doi.org/10.1007/978-3-540-74792-5_12

[35] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2008. The Essence of Form Abstraction. In Proceedings of

the 6th Asian Symposium on Programming Languages and Systems (Bangalore, India) (APLAS ’08). Springer-Verlag,

Berlin, Heidelberg, 205ś220. https://doi.org/10.1007/978-3-540-89330-1_15

[36] Ezra E. K. Cooper and Philip Wadler. 2009. The RPC Calculus. In Proceedings of the 11th ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming (Coimbra, Portugal) (PPDP ’09). ACM, New York, NY, USA,

231ś242. https://doi.org/10.1145/1599410.1599439

[37] Luís Cruz-Filipe and Fabrizio Montesi. 2016. Choreographies in Practice. In Proceedings of the 36th IFIP International

Conference on Formal Techniques for Distributed Objects, Components, and Systems (Heraklion, Greece) (FORTE ’16),

Elvira Albert and Ivan Lanese (Eds.). Springer-Verlag, Berlin, Heidelberg, 114ś123. https://doi.org/10.1007/978-3-

319-39570-8_8

[38] Gianpaolo Cugola and Alessandro Margara. 2013. Deployment Strategies for Distributed Complex Event Processing.

Computing 95, 2 (Feb. 2013), 129ś156. https://doi.org/10.1007/s00607-012-0217-9

[39] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 2016. 43 Years of Actors: A Taxonomy of Actor

Models and Their Key Properties. In Proceedings of the 6th International Workshop on Programming Based on Actors,

Agents, and Decentralized Control (Amsterdam, Netherlands) (AGERE ’16). ACM, New York, NY, USA, 31ś40. https:

//doi.org/10.1145/3001886.3001890

[40] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De Meuter. 2015. Partitioned Global

Address Space Languages. Comput. Surveys 47, 4, Article 62 (May 2015), 27 pages. https://doi.org/10.1145/2716320

[41] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM

51, 1 (Jan. 2008), 107ś113. https://doi.org/10.1145/1327452.1327492

[42] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and Wolfgang De Meuter. 2006. Ambient-Oriented

Programming in Ambienttalk. In Proceedings of the 20th European Conference on Object-Oriented Programming (Nantes,

France) (ECOOP ’06). Springer-Verlag, Berlin, Heidelberg, 230ś254. https://doi.org/10.1007/11785477_16

[43] Gwenaël Delaval, Alain Girault, and Marc Pouzet. 2008. A Type System for the Automatic Distribution of Higher-

Order Synchronous Dataflow Programs. In Proceedings of the 2008 ACM SIGPLAN-SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems (Tucson, AZ, USA) (LCTES ’08). ACM, New York, NY, USA, 101ś110.

https://doi.org/10.1145/1375657.1375672

[44] Anton Ekblad and Koen Claessen. 2014. A Seamless, Client-centric Programming Model for Type Safe Web Applica-

tions. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell (Gothenburg, Sweden) (Haskell ’14). ACM, New

York, NY, USA, 79ś89. https://doi.org/10.1145/2633357.2633367

[45] Stefan Fehrenbach and James Cheney. 2019. Language-Integrated Provenance by Trace Analysis. In Proceedings of the

17th ACM SIGPLAN International Symposium on Database Programming Languages (Phoenix, AZ, USA) (DBPL ’19).

ACM, New York, NY, USA, 74ś84. https://doi.org/10.1145/3315507.3330198

[46] Haxe Foundation. 2005. Haxe cross-platform toolkit. http://haxe.org. Accessed 2020-05-05.

[47] Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-Wesley Professional.

[48] Simon Fowler. 2020. Model-View-Update-Communicate: Session Types meet the Elm Architecture. In Proceedings of

the 34rd European Conference on Object-Oriented Programming (ECOOP 2019) (Berlin, Germany) (Leibniz International

Proceedings in Informatics (LIPIcs)). Schloss Dagstuhl ś Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 29.

[49] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional Asynchronous Session Types:

Session Types without Tiers. Proceedings of the ACM on Programming Languages 3, POPL, Article 28 (Jan. 2019),

29 pages. https://doi.org/10.1145/3290341

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1017/S0956796819000029
https://doi.org/10.1145/1323293.1294265
http://usenix.org/events/sec07/tech/full_papers/chong/chong.pdf
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-89330-1_15
https://doi.org/10.1145/1599410.1599439
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/s00607-012-0217-9
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/2716320
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/11785477_16
https://doi.org/10.1145/1375657.1375672
https://doi.org/10.1145/2633357.2633367
https://doi.org/10.1145/3315507.3330198
http://haxe.org
https://doi.org/10.1145/3290341

81:30 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

[50] David Garlan and Mary Shaw. 1994. An Introduction to Software Architecture. Technical Report. Pittsburgh, PA, USA.

http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf Accessed 2020-05-05.

[51] David Gelernter. 1985. Generative communication in Linda. ACM Transactions on Programming Languages and

Systems 7, 1 (Jan. 1985), 80ś112. https://doi.org/10.1145/2363.2433

[52] Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2020. Choreographies as Objects. arXiv:2005.09520

[53] Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco Visser. 2008. WebDSL: A Domain-Specific Language

for Dynamic Web Applications. In Companion to the 23rd ACM SIGPLAN Conference on Object-Oriented Programming

Systems Languages and Applications (Nashville, TN, USA) (OOPSLA Companion ’08). ACM, New York, NY, USA,

779ś780. https://doi.org/10.1145/1449814.1449858

[54] Object Management Group. 1993. The Common Object Request Broker: Architecture and Specification. Wiley-QED.

[55] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. 2009. Ferry ś Database-Supported Program Execution.

In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (Providence, RI, USA)

(SIGMOD ’09). ACM, New York, NY, USA, 1063ś1066. https://doi.org/10.1145/1559845.1559982

[56] Arjun Guha, Jean-Baptiste Jeannin, Rachit Nigam, Jane Tangen, and Rian Shambaugh. 2017. Fission: Secure Dynamic

Code-Splitting for JavaScript. In Proceedings of the 2nd Summit on Advances in Programming Languages (SNAPL 2017)

(Asilomar, CA, USA) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 71), Benjamin S. Lerner, Rastislav

Bodík, and Shriram Krishnamurthi (Eds.). Schloss Dagstuhl ś Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

5:1ś5:13. https://doi.org/10.4230/LIPIcs.SNAPL.2017.5

[57] Philipp Haller and Martin Odersky. 2009. Scala Actors: Unifying Thread-Based and Event-Based Programming.

Theoretical Computer Science 410, 2ś3 (Feb. 2009), 202ś220. https://doi.org/10.1016/j.tcs.2008.09.019

[58] Seif Haridi, Peter Van Roy, and Gert Smolka. 1997. An Overview of the Design of Distributed Oz. In Proceedings of the

Second International Symposium on Parallel Symbolic Computation (Maui, HI, USA) (PASCO ’97). ACM, New York, NY,

USA, 176ś187. https://doi.org/10.1145/266670.266726

[59] Zef Hemel and Eelco Visser. 2011. Declaratively Programming the Mobile Web with Mobl. In Proceedings of the 2011

ACM International Conference on Object Oriented Programming Systems Languages and Applications (Portland, OR,

USA) (OOPSLA ’11). ACM, New York, NY, USA, 695ś712. https://doi.org/10.1145/2048066.2048121

[60] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular Actor Formalism for Artificial Intelligence.

In Proceedings of the 3rd International Joint Conference on Artificial Intelligence (Stanford, CA, USA) (IJCAI ’73).

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 235ś245. http://ijcai.org/Proceedings/73/Papers/027B.pdf

Accessed 2020-05-05.

[61] Daniel Hillerström, Sam Lindley, Robert Atkey, and KC Sivaramakrishnan. 2017. Continuation Passing Style for Effect

Handlers. In Proceedings of the 2nd International Conference on Formal Structures for Computation and Deduction (FSCD

2017) (Oxford, UK) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 84), Dale Miller (Ed.). Schloss Dagstuhl

ś Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 18:1ś18:19. https://doi.org/10.4230/LIPIcs.FSCD.2017.18

[62] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker, and Ion Stoica. 2003. Querying

the Internet with PIER. In Proceedings of the 29th International Conference on Very Large Data Bases (Berlin, Germany)

(VLDB ’03). VLDB Endowment, 321ś332. https://doi.org/10.1016/B978-012722442-8/50036-7

[63] Galen C. Hunt and Michael L. Scott. 1999. The Coign Automatic Distributed Partitioning System. In Proceedings of

the Third Symposium on Operating Systems Design and Implementation (New Orleans, LA, USA) (OSDI ’99). USENIX

Association, Berkeley, CA, USA, 187ś200. http://usenix.org/events/osdi99/full_papers/hunt/hunt.pdf Accessed

2020-05-05.

[64] Ming-Yee Iu, Emmanuel Cecchet, and Willy Zwaenepoel. 2010. JReq: Database Queries in Imperative Languages.

In Proceedings of the 19th Joint European Conference on Theory and Practice of Software, International Conference

on Compiler Construction (Paphos, Cyprus) (CC/ETAPS ’10). Springer-Verlag, Berlin, Heidelberg, 84ś103. https:

//doi.org/10.1007/978-3-642-11970-5_6

[65] Ahmad Jbara and Dror G. Feitelson. 2015. How Programmers Read Regular Code: A Controlled Experiment Using

Eye Tracking. In Proceedings of the 23rd IEEE International Conference on Program Comprehension (Florence, Italy)

(ICPC ’15). IEEE Press, Piscataway, NJ, USA, 244ś254. https://doi.org/10.1109/ICPC.2015.35

[66] JetBrains. 2009. Kotlin programming language. http://kotlinlang.org. Accessed 2020-05-05.

[67] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. 1994. A Note on Distributed Computing. Technical

Report. Sun Microsystems, Inc., Mountain View, CA, USA.

[68] Federico Kereki. 2010. Essential GWT: Building for the Web with Google Web Toolkit 2 (1st ed.). Addison-Wesley

Professional.

[69] Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015. Tracing

Software Developers’ Eyes and Interactions for Change Tasks. In Proceedings of the the 10th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

(Bergamo, Italy) (ESEC/FSE ’15). ACM, New York, NY, USA, 202ś213. https://doi.org/10.1145/2786805.2786864

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
https://doi.org/10.1145/2363.2433
https://arxiv.org/abs/2005.09520
https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1145/1559845.1559982
https://doi.org/10.4230/LIPIcs.SNAPL.2017.5
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1145/266670.266726
https://doi.org/10.1145/2048066.2048121
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.1016/B978-012722442-8/50036-7
http://usenix.org/events/osdi99/full_papers/hunt/hunt.pdf
https://doi.org/10.1007/978-3-642-11970-5_6
https://doi.org/10.1007/978-3-642-11970-5_6
https://doi.org/10.1109/ICPC.2015.35
http://kotlinlang.org
https://doi.org/10.1145/2786805.2786864

A Survey of Multitier Programming 81:31

[70] Khronos OpenCL Working Group. 2009. The OpenCL Specification. In Proceedings of the 2009 IEEE Hot Chips 21

Symposium (Stanford, CA, USA) (HCS ’09). 314. https://doi.org/10.1109/HOTCHIPS.2009.7478342

[71] Robert Klepper and Douglas Bock. 1995. Third and Fourth Generation Language Productivity Differences. Commun.

ACM 38, 9 (Sept. 1995), 69ś79. https://doi.org/10.1145/223248.223268

[72] Konstantinos Kloudas, Margarida Mamede, Nuno Preguiça, and Rodrigo Rodrigues. 2015. Pixida: Optimizing Data

Parallel Jobs in Wide-Area Data Analytics. Proceedings of the VLDB Endowment 9, 2 (Oct. 2015), 72ś83. https:

//doi.org/10.14778/2850578.2850582

[73] Geetika T. Lakshmanan, Ying Li, and Rob Strom. 2008. Placement Strategies for Internet-Scale Data Stream Systems.

IEEE Internet Computing 12, 6 (Nov. 2008), 50ś60. https://doi.org/10.1109/MIC.2008.129

[74] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridging the Gap between Interaction-

and Process-Oriented Choreographies. In Proceedings of the 6th IEEE International Conference on Software Engineering

and Formal Methods (Cape Town, South Africa) (SEFM ’08). IEEE Computer Society, Washington, DC, USA, 323ś332.

https://doi.org/10.1109/SEFM.2008.11

[75] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program Comprehension as Fact

Finding. In Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (Dubrovnik, Croatia) (ESEC/FSE ’07). ACM, New York,

NY, USA, 361ś370. https://doi.org/10.1145/1287624.1287675

[76] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental Models: A Study of Developer Work

Habits. In Proceedings of the 28th International Conference on Software Engineering (Shanghai, China) (ICSE ’06). ACM,

New York, NY, USA, 492ś501. https://doi.org/10.1145/1134285.1134355

[77] Orion Sky Lawlor. 2011. Embedding OpenCL in C++ for Expressive GPU Programming. In Proceedings of the 5th

International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing

(Tucson, AZ, USA) (WOLFHPC ’11). http://hpc.pnl.gov/conf/wolfhpc/2011/papers/L2011.pdf Accessed 2020-05-05.

[78] Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In Proceedings of the 5th Workshop on

Mathematically Structured Functional Programming (Grenoble, France) (MSFP ’14), Paul Levy and Neel Krishnaswami

(Eds.). 100ś126. https://doi.org/10.4204/EPTCS.153.8

[79] Xavier Leroy. 2000. A Modular Module System. Journal of Functional Programming 10, 3 (May 2000), 269ś303.

https://doi.org/10.1017/S0956796800003683

[80] Stanley Letovsky. 1986. Cognitive Processes in Program Comprehension. In Papers Presented at the First Workshop on

Empirical Studies of Programmers on Empirical Studies of Programmers (Washington, D.C., USA). Ablex Publishing

Corp., Norwood, NJ, USA, 58ś79.

[81] Haoyi Li. 2012. ScalaTags. http://www.lihaoyi.com/scalatags/. Accessed 2020-05-05.

[82] Yu-Tzu Lin, Cheng-Chih Wu, Ting-Yun Hou, Yu-Chih Lin, Fang-Ying Yang, and Chia-Hu Chang. 2016. Tracking

Students’ Cognitive Processes During Program Debugging ś An Eye-Movement Approach. IEEE Transactions on

Education 59, 3 (2016), 175ś186. https://doi.org/10.1109/TE.2015.2487341

[83] Sam Lindley and J. Garrett Morris. 2017. Lightweight Functional Session Types. In Behavioural Types: From Theory to

Tools, Simon Gay and António Ravara (Eds.). River Publishers, Chapter 12. https://doi.org/10.13052/rp-9788793519817

[84] Barbara Liskov. 1988. Distributed Programming in Argus. Commun. ACM 31, 3 (March 1988), 300ś312. https:

//doi.org/10.1145/42392.42399

[85] Alberto Lluch Lafuente, Flemming Nielson, and Hanne Riis Nielson. 2015. Discretionary Information Flow Control for

Interaction-Oriented Specifications. Lecture Notes in Computer Science, Vol. 9200. Springer-Verlag, Berlin, Heidelberg,

427ś450. https://doi.org/10.1007/978-3-319-23165-5_20

[86] Zhengqin Luo, Tamara Rezk, and Manuel Serrano. 2011. Automated Code Injection Prevention for Web Applications.

In Proceedings of the 2011 International Conference on Theory of Security and Applications (Saarbrücken, Germany)

(TOSCA ’11). Springer-Verlag, Berlin, Heidelberg, 186ś204. https://doi.org/10.1007/978-3-642-27375-9_11

[87] Dragos Manolescu, Brian Beckman, and Benjamin Livshits. 2008. Volta: Developing Distributed Applications by

Recompiling. IEEE Software 25, 5 (Sept. 2008), 53ś59. https://doi.org/10.1109/MS.2008.131

[88] NenadMedvidovic and Richard N. Taylor. 2000. A Classification and Comparison Framework for Software Architecture

Description Languages. IEEE Transactions on Software Engineering 26, 1 (Jan. 2000), 70ś93. https://doi.org/10.1109/32.

825767

[89] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and How to Develop Domain-Specific Languages.

Comput. Surveys 37, 4 (Dec. 2005), 316ś344. https://doi.org/10.1145/1118890.1118892

[90] Heather Miller, Philipp Haller, Normen Müller, and Jocelyn Boullier. 2016. Function Passing: A Model for Typed,

Distributed Functional Programming. In Proceedings of the 2016 ACM International Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Software (Amsterdam, Netherlands) (Onward! 2016). ACM, New York,

NY, USA, 82ś97. https://doi.org/10.1145/2986012.2986014

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://doi.org/10.1145/223248.223268
https://doi.org/10.14778/2850578.2850582
https://doi.org/10.14778/2850578.2850582
https://doi.org/10.1109/MIC.2008.129
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1145/1287624.1287675
https://doi.org/10.1145/1134285.1134355
http://hpc.pnl.gov/conf/wolfhpc/2011/papers/L2011.pdf
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1017/S0956796800003683
http://www.lihaoyi.com/scalatags/
https://doi.org/10.1109/TE.2015.2487341
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1145/42392.42399
https://doi.org/10.1145/42392.42399
https://doi.org/10.1007/978-3-319-23165-5_20
https://doi.org/10.1007/978-3-642-27375-9_11
https://doi.org/10.1109/MS.2008.131
https://doi.org/10.1109/32.825767
https://doi.org/10.1109/32.825767
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/2986012.2986014

81:32 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

[91] Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A Type-Based Foundation for Closures in the Age

of Concurrency and Distribution. In Proceedings of the 28th European Conference on Object-Oriented Programming

(Uppsala, Sweden) (ECOOP ’14). Springer-Verlag, Berlin, Heidelberg, 308ś333. https://doi.org/10.1007/978-3-662-

44202-9_13

[92] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. 2005. Concurrency Among Strangers: Programming in E as

Plan Coordination. In Proceedings of the 1st International Conference on Trustworthy Global Computing (Edinburgh,

UK) (TGC ’05). Springer-Verlag, Berlin, Heidelberg, 195ś229. https://doi.org/10.1007/11580850_12

[93] Fabrizio Montesi. 2014. Kickstarting Choreographic Programming. In Proceedings of the 13th International Workshop

on Web Services and Formal Methods (Eindhoven, Netherlands) (WS-FM ’14), Thomas Hildebrandt, António Ravara,

Jan Martijn van der Werf, and Matthias Weidlich (Eds.). Springer-Verlag, Berlin, Heidelberg, 3ś10. https://doi.org/10.

1007/978-3-319-33612-1_1

[94] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. 2014. Service-Oriented Programming with Jolie. Springer-

Verlag, Berlin, Heidelberg, 81ś107. https://doi.org/10.1007/978-1-4614-7518-7_4

[95] Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. 2012. Scala-Virtualized. In Proceedings of the ACM

SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation (Philadelphia, PA, USA) (PEPM ’12). ACM,

New York, NY, USA, 117ś120. https://doi.org/10.1145/2103746.2103769

[96] Tom Murphy, VII, Karl Crary, and Robert Harper. 2007. Type-safe Distributed Programming with ML5. In Proceedings

of the 3rd Conference on Trustworthy Global Computing (Sophia-Antipolis, France) (TGC ’07). Springer-Verlag, Berlin,

Heidelberg, 108ś123. https://doi.org/10.1007/978-3-540-78663-4_9

[97] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishnamurthi. 2014. Tierless Programming

and Reasoning for Software-Defined Networks. In Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation (Seattle, WA, USA) (NSDI ’14). USENIX Association, Berkeley, CA, USA, 519ś531. http:

//usenix.org/system/files/conference/nsdi14/nsdi14-paper-nelson.pdf Accessed 2020-05-05.

[98] Matthias Neubauer and Peter Thiemann. 2005. From Sequential Programs to Multi-Tier Applications by Program

Transformation. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(Long Beach, CA, USA) (POPL ’05). ACM, New York, NY, USA, 221ś232. https://doi.org/10.1145/1040305.1040324

[99] Matthias Neubauer and Peter Thiemann. 2008. Placement Inference for a Client-Server Calculus. In Proceedings of the

35th International Colloquium on Automata, Languages and Programming, Part II (Reykjavik, Iceland) (ICALP ’08).

Springer-Verlag, Berlin, Heidelberg, 75ś86. https://doi.org/10.1007/978-3-540-70583-3_7

[100] David Park. 1981. Concurrency and Automata on Infinite Sequences. In Proceedings of the 5th GI-Conference on

Theoretical Computer Science (Karlsruhe, Germany). Springer-Verlag, Berlin, Heidelberg, 167ś183. https://doi.org/10.

1007/BFb0017309

[101] Dewayne E. Perry and Alexander L. Wolf. 1992. Foundations for the Study of Software Architecture. ACM SIGSOFT

Software Engineering Notes 17, 4 (Oct. 1992), 40ś52. https://doi.org/10.1145/141874.141884

[102] Per Persson and Ola Angelsmark. 2015. Calvin ś Merging Cloud and IoT. Procedia Computer Science 52, The 6th

International Conference on Ambient Systems, Networks and Technologies, the 5th International Conference on

Sustainable Energy Information Technology (2015), 210ś217. https://doi.org/10.1016/j.procs.2015.05.059

[103] Laure Philips, Joeri De Koster, Wolfgang De Meuter, and Coen De Roover. 2018. Search-based Tier Assignment for

Optimising Offline Availability in Multi-tier Web Applications. The Art, Science, and Engineering of Programming 2, 2

(Dec. 2018), 3:1ś3:29. https://doi.org/10.22152/programming-journal.org/2018/2/3

[104] Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang De Meuter. 2014. Towards Tierless Web Development

without Tierless Languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,

and Reflections on Programming & Software (Portland, OR, USA) (Onward! 2014). ACM, New York, NY, USA, 69ś81.

https://doi.org/10.1145/2661136.2661146

[105] Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang De Meuter. 2014. Towards Tierless Web Development

Without Tierless Languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,

and Reflections on Programming & Software (Onward! 2014). ACM, New York, NY, USA, 69ś81. https://doi.org/10.

1145/2661136.2661146

[106] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh, and Margo Seltzer. 2006.

Network-Aware Operator Placement for Stream-Processing Systems. In Proceedings of the 22nd International Conference

on Data Engineering (Atlanta, GA, USA) (ICDE ’06). IEEE Computer Society, Washington, DC, USA, 49ś60. https:

//doi.org/10.1109/ICDE.2006.105

[107] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. 2017. Dynamic Chore-

ographies: Theory And Implementation. Logical Methods in Computer Science 13, 2 (April 2017), 57. https:

//doi.org/10.23638/LMCS-13(2:1)2017

[108] Quill. 2015. http://getquill.io/. Accessed 2020-05-05.

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1007/11580850_12
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1145/2103746.2103769
https://doi.org/10.1007/978-3-540-78663-4_9
http://usenix.org/system/files/conference/nsdi14/nsdi14-paper-nelson.pdf
http://usenix.org/system/files/conference/nsdi14/nsdi14-paper-nelson.pdf
https://doi.org/10.1145/1040305.1040324
https://doi.org/10.1007/978-3-540-70583-3_7
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1145/141874.141884
https://doi.org/10.1016/j.procs.2015.05.059
https://doi.org/10.22152/programming-journal.org/2018/2/3
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1109/ICDE.2006.105
https://doi.org/10.1109/ICDE.2006.105
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.23638/LMCS-13(2:1)2017
http://getquill.io/

A Survey of Multitier Programming 81:33

[109] Gabriel Radanne and Jérôme Vouillon. 2018. Tierless Web Programming in the Large. In Companion Proceedings

of the The Web Conference 2018 (Lyon, France) (WWW ’18). International World Wide Web Conferences Steering

Committee, Republic and Canton of Geneva, Switzerland, 681ś689. https://doi.org/10.1145/3184558.3185953

[110] Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. 2016. Eliom: A core ML language for Tierless Web Programming.

In Proceedings of the 14th Asian Symposium on Programming Languages and Systems (Hanoi, Vietnam) (APLAS ’16).

Springer-Verlag, Berlin, Heidelberg, 377ś397. https://doi.org/10.1007/978-3-319-47958-3_20

[111] David Rajchenbach-Teller and Franois-Régis Sinot. 2010. Opa: Language Support for a Sane, Safe and Secure Web.

In Proceedings of the OWASP AppSec Research (Stockholm, Sweden). http://owasp.org/www-pdf-archive/OWASP_

AppSec_Research_2010_OPA_by_Rajchenbach-Teller.pdf Accessed 2020-05-05.

[112] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. 2007. R-OSGi: Distributed Applications through Software

Modularization. In Proceedings of the ACM/IFIP/USENIX 2007 International Conference on Middleware (Newport Beach,

CA, USA) (Middleware ’07). Springer-Verlag, Berlin, Heidelberg, 1ś20. https://doi.org/10.1007/978-3-540-76778-7_1

[113] Bob Reynders, Dominique Devriese, and Frank Piessens. 2014. Multi-Tier Functional Reactive Programming for

the Web. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on

Programming & Software (Portland, OR, USA) (Onward! 2014). ACM, New York, NY, USA, 55ś68. https://doi.org/10.

1145/2661136.2661140

[114] Bob Reynders, Frank Piessens, and Dominique Devriese. 2020. Gavial: Programming the Web with Multi-Tier FRP.

The Art, Science, and Engineering of Programming 4, 3 (Feb. 2020), 6:1ś6:32. https://doi.org/10.22152/programming-

journal.org/2020/4/6

[115] Julien Richard-Foy, Olivier Barais, and Jean-Marc Jézéquel. 2013. Efficient High-Level Abstractions for Web Pro-

gramming. In Proceedings of the 12th International Conference on Generative Programming: Concepts & Experiences

(Indianapolis, IN, USA) (GPCE ’13). ACM, New York, NY, USA, 53ś60. https://doi.org/10.1145/2517208.2517227

[116] Java RMI. 1999. Java Remote Method Invocation ś Distributed Computing for Java. Technical Report. Sun Microsys-

tems, Inc., Mountain View, CA, USA. http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html

Accessed 2020-05-05.

[117] Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code

Generation and Compiled DSLs. In Proceedings of the 9th International Conference on Generative Programming and

Component Engineering (Eindhoven, The Netherlands) (GPCE ’10). ACM, New York, NY, USA, 127ś136. https:

//doi.org/10.1145/1868294.1868314

[118] Joachim W. Schmidt and Florian Matthes. 1994. The DBPL Project: Advances in Modular Database Programming.

Information Systems 19, 2 (March 1994), 121ś140. https://doi.org/10.1016/0306-4379(94)90007-8

[119] Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop, A Language for Programming the Web 2.0. In

Companion to the 21th ACM SIGPLANConference on Object-Oriented Programming, Systems, Languages, and Applications

(Portland, OR, USA) (OOPSLA Companion ’06). ACM, New York, NY, USA.

[120] Manuel Serrano and Vincent Prunet. 2016. A Glimpse of Hopjs. In Proceedings of the 21st ACM SIGPLAN International

Conference on Functional Programming (Nara, Japan) (ICFP ’16). ACM, New York, NY, USA, 180ś192. https://doi.org/

10.1145/2951913.2951916

[121] Manuel Serrano and Christian Queinnec. 2010. A Multi-Tier Semantics for Hop. Higher-Order and Symbolic

Computation 23, 4 (Nov. 2010), 409ś431. https://doi.org/10.1007/s10990-010-9061-9

[122] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair Allen-Williams, Pierre Habouzit, and

Viktor Vafeiadis. 2005. Acute: High-Level Programming Language Design for Distributed Computation. In Proceedings

of the 10th ACM SIGPLAN International Conference on Functional Programming (Tallinn, Estonia) (ICFP ’05). ACM,

New York, NY, USA, 15ś26. https://doi.org/10.1145/1086365.1086370

[123] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-Free Replicated Data Types. In

Proceedings of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems (Grenoble,

France) (SSS ’11). Springer-Verlag, Berlin, Heidelberg, 386ś400. https://doi.org/10.1007/978-3-642-24550-3_29

[124] Slick. 2014. http://scala-slick.org/. Accessed 2020-05-05.

[125] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowledge. IEEE Transactions on Software

Engineering 10, 5 (Sept. 1984), 595ś609. https://doi.org/10.1109/TSE.1984.5010283

[126] Diomidis Spinellis. 2001. Notable Design Patterns for Domain-Specific Languages. Journal of Systems and Software

56, 1 (Feb. 2001), 91ś99. https://doi.org/10.1016/S0164-1212(00)00089-3

[127] Storm. 2011. http://storm.apache.org/. Accessed 2020-05-05.

[128] Isaac Strack. 2012. Getting Started with Meteor.js JavaScript Framework (1st ed.). Packt Publishing.

[129] Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with Explicit Annotations. In Proceedings of the 1997 ACM

SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation (Amsterdam, The Netherlands)

(PEPM ’97). ACM, New York, NY, USA, 203ś217. https://doi.org/10.1145/258993.259019

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/3184558.3185953
https://doi.org/10.1007/978-3-319-47958-3_20
http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OPA_by_Rajchenbach-Teller.pdf
http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OPA_by_Rajchenbach-Teller.pdf
https://doi.org/10.1007/978-3-540-76778-7_1
https://doi.org/10.1145/2661136.2661140
https://doi.org/10.1145/2661136.2661140
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://doi.org/10.1145/2517208.2517227
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1016/0306-4379(94)90007-8
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1007/s10990-010-9061-9
https://doi.org/10.1145/1086365.1086370
https://doi.org/10.1007/978-3-642-24550-3_29
http://scala-slick.org/
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1016/S0164-1212(00)00089-3
http://storm.apache.org/
https://doi.org/10.1145/258993.259019

81:34 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi

[130] JohnA. Thywissen, ArthurMichener Peters, andWilliam R. Cook. 2016. Implicitly Distributing Pervasively Concurrent

Programs: Extended Abstract. In Proceedings of the 1st Workshop on Programming Models and Languages for Distributed

Computing (Rome, Italy) (PMLDC ’16). ACM, New York, NY, USA, Article 1, 4 pages. https://doi.org/10.1145/2957319.

2957370

[131] Eli Tilevich and Yannis Smaragdakis. 2002. J-Orchestra: Automatic Java Application Partitioning. In Proceedings of

the 16th European Conference on Object-Oriented Programming (London, UK) (ECOOP ’02), Boris Magnusson (Ed.).

Springer-Verlag, Berlin, Heidelberg, 178ś204. https://doi.org/10.1007/3-540-47993-7_8

[132] Chris Tomlinson, Won Kim, Mark Scheevel, Vineet Singh, Becky Will, and Gul Agha. 1988. Rosette: An Object-

Oriented Concurrent Systems Architecture. In Proceedings of the 1988 ACM SIGPLAN Workshop on Object-Based

Concurrent Programming (San Diego, CA, USA) (OOPSLA/ECOOP Companion ’88). ACM, New York, NY, USA, 91ś93.

https://doi.org/10.1145/67386.67410

[133] Mads Torgersen. 2007. Querying in C#: How Language Integrated Query (LINQ) Works. In Companion to the 22nd

ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications Companion (Montreal, Quebec,

Canada) (OOPSLA Companion ’07). ACM, New York, NY, USA, 852ś853. https://doi.org/10.1145/1297846.1297922

[134] Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. 2014. An Eye-Tracking Study Assessing the Compre-

hension of C++ and Python Source Code. In Proceedings of the Symposium on Eye Tracking Research and Applications

(Safety Harbor, Florida) (ETRA ’14). ACM, New York, NY, USA, 231ś234. https://doi.org/10.1145/2578153.2578218

[135] Arie van Deursen and Paul Klint. 1998. Little Languages: Little Maintenance? Journal of Software Maintenance: Research

and Practice 10, 2 (1998), 75ś92. https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5

[136] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific Languages: An Annotated Bibliography. ACM

SIGPLAN Notices 35, 6 (June 2000), 26ś36. https://doi.org/10.1145/352029.352035

[137] Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf Scheidhauer. 1997. Mobile Objects

in Distributed Oz. ACM Transactions on Programming Languages and Systems 19, 5 (Sept. 1997), 804ś851. https:

//doi.org/10.1145/265943.265972

[138] Carlos Varela and Gul Agha. 2001. Programming Dynamically Reconfigurable Open Systems with SALSA. ACM

SIGPLAN Notices 36, 12 (Dec. 2001), 20ś34. https://doi.org/10.1145/583960.583964

[139] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-Transactional Distributed Storage Systems. Comput.

Surveys 49, 1, Article 19 (June 2016), 34 pages. https://doi.org/10.1145/2926965

[140] Moisés Viñas, Zeki Bozkus, and Basilio B. Fraguela. 2013. Exploiting Heterogeneous Parallelism with the Heteroge-

neous Programming Library. J. Parallel and Distrib. Comput. 73, 12 (Dec. 2013), 1627ś1638. https://doi.org/10.1016/j.

jpdc.2013.07.013

[141] W3C WS-CDL Working Group. 2005. Web Services Choreography Description Language Version 1.0. http://www.w3.

org/TR/ws-cdl-10/. Accessed 2020-05-05.

[142] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Distributed System Development with ScalaLoci.

Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 129 (Oct. 2018), 30 pages. https://doi.org/10.

1145/3276499

[143] Pascal Weisenburger and Guido Salvaneschi. 2019. Multitier Modules. In Proceedings of the 33rd European Conference

on Object-Oriented Programming (ECOOP 2019) (London, UK) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl ś Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 3:1ś3:29.

https://doi.org/10.4230/LIPIcs.ECOOP.2019.3

[144] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International Conference on Software Engineering (San

Diego, CA, USA) (ICSE ’81). IEEE Press, Piscataway, NJ, USA, 439ś449.

[145] Marcus Westin. 2010. Fun: A programming language for the realtime web. http://marcuswest.in/essays/fun-intro/.

Accessed 2020-05-05.

[146] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. 2012. OpenACC ś First Experiences with

Real-World Applications. In Proceedings of the 18th International Conference on Parallel Processing (Rhodes Island,

Greece) (Euro-Par ’12). Springer-Verlag, Berlin, Heidelberg, 859ś870. https://doi.org/10.1007/978-3-642-32820-6_85

[147] David Wile. 2004. Lessons Learned from Real DSL Experiments. Science of Computer Programming 51, 3 (June 2004),

265ś290. https://doi.org/10.1016/j.scico.2003.12.006

[148] Limsoon Wong. 2000. Kleisli, a Functional Query System. Journal of Functional Programming 10, 1 (Jan. 2000), 19ś56.

https://doi.org/10.1017/S0956796899003585

[149] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan Demers, Johannes Gehrke, and Jayavel Shanmugasundaram.

2007. A Unified Platform for Data Driven Web Applications with Automatic Client-Server Partitioning. In Proceedings

of the 16th International Conference on World Wide Web (Banff, Alberta, Canada) (WWW ’07). ACM, New York, NY,

USA, 341ś350. https://doi.org/10.1145/1242572.1242619

[150] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/2957319.2957370
https://doi.org/10.1145/2957319.2957370
https://doi.org/10.1007/3-540-47993-7_8
https://doi.org/10.1145/67386.67410
https://doi.org/10.1145/1297846.1297922
https://doi.org/10.1145/2578153.2578218
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/265943.265972
https://doi.org/10.1145/265943.265972
https://doi.org/10.1145/583960.583964
https://doi.org/10.1145/2926965
https://doi.org/10.1016/j.jpdc.2013.07.013
https://doi.org/10.1016/j.jpdc.2013.07.013
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
http://marcuswest.in/essays/fun-intro/
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1016/j.scico.2003.12.006
https://doi.org/10.1017/S0956796899003585
https://doi.org/10.1145/1242572.1242619

A Survey of Multitier Programming 81:35

Cluster Computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation

(San Jose, CA, USA) (NSDI ’12). USENIX Association, Berkeley, CA, USA, 14. http://www.usenix.org/system/files/

conference/nsdi12/nsdi12-final138.pdf Accessed 2020-05-05.

[151] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. 2002. Secure Program Partitioning.

ACM Transactions on Computer Systems 20, 3 (Aug. 2002), 283ś328. https://doi.org/10.1145/566340.566343

ACM Comput. Surv., Vol. 53, No. 4, Article 81. Publication date: September 2020.

http://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://doi.org/10.1145/566340.566343

	Abstract
	1 Introduction
	2 Multitier Programming in a Nutshell
	2.1 Benefits of Multitier Programming
	2.2 An Overview of Multitier Languages

	3 A Glimpse of Multitier Languages
	3.1 Hop
	3.2 Links
	3.3 Ur/Web
	3.4 Eliom
	3.5 Google Web Toolkit (GWT)
	3.6 ScalaLoci

	4 Analysis
	4.1 Degrees of MT Programming
	4.2 Placement Strategy
	4.3 Placement Specification and Granularity
	4.4 Communication Abstractions
	4.5 Formalization of MT Languages
	4.6 Distribution Topologies

	5 Discussion and Outlook
	5.1 Generic Distributed Systems
	5.2 Failures
	5.3 Programming in the Large
	5.4 Controlled Experiments

	6 Related Approaches
	7 Conclusion
	8 Acknowledgements
	References

