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Distributed applications are traditionally developed as separate modules, often in different languages, which

react to events, like user input, and in turn produce new events for the other modules. Separation into compo-

nents requires time-consuming integration. Manual implementation of communication forces programmers

to deal with low-level details. The combination of the two results in obscure distributed data flows scattered

among multiple modules, hindering reasoning about the system as a whole.

The ScalaLoci distributed programming language addresses these issues with a coherent model based on

placement types that enables reasoning about distributed data flows, supportingmultiple software architectures

via dedicated language features and abstracting over low-level communication details and data conversions.

As we show, ScalaLoci simplifies developing distributed systems, reduces error-prone communication code

and favors early detection of bugs.
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1 INTRODUCTION

Despite a long history of research, developing distributed applications remains challenging. Among
the sources of complexity, we find that distributed applications require transferring both data and
control among different hosts [Thekkath et al. 1994] and are often event-based [Carzaniga et al.
2001; Meier and Cahill 2005]. These two aspects complicate reasoning about the distributed system
because its run time behavior depends on the interaction among separate modules via events,
whose occurrences can be unpredictable and potentially interleaving [Edwards 2009; Fischer et al.
2007]. First, separate development of each module limits programmers to only a local view, which
hinders understanding the interactions in the entire system. Second, keeping track of potential
events, control flows and data flows among components may become cumbersome.
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These issues have been addressed by multitier (sometimes called tierless) programming, which
aims to lower the effort of developing distributed applications, and reactive programming, a technique
which allows direct data flow specification.

Multitier languages aim to bring the development of distributed systems closer to programming
single-host applications providing means to abstract over distribution and remote communication
among different components. With multitier languages, programmers use a single language and
mix functionalities that belong to different tiers, e.g., the client and the server, inside the same

compilation unit. The compiler automatically splits such compilation unit into the modules to
deploy on each tier and generates the necessary communication code [Cooper et al. 2007; Neubauer
and Thiemann 2005; Serrano et al. 2006]. As a result, developers do not need to handle details like
data conversion and network communication and can focus on the actual application logic.
Reactive programming (RP) is an approach to develop reactive and event-based applications

which leads to code that is more composable, more compact [Salvaneschi and Mezini 2014] and
easier to understand [Meyerovich et al. 2009; Salvaneschi et al. 2014a]. Earlier RP solutions focused
on purely functional languages [Elliott and Hudak 1997] investigating sound [Hudak et al. 2003]
and efficient [Elliott 2009] implementations. More recent research developed RP for mainstream
languages, seeing significant industrial adoption. Examples include Reactive Extensions / Rx [Meijer
2010] (available for a number of languages), FrTime [Cooper and Krishnamurthi 2006] (Scheme),
Flapjax [Meyerovich et al. 2009] (JavaScript), Scala.React [Maier et al. 2010] and REScala [Salvaneschi
et al. 2014b] (Scala).

The techniques above currently do not achieve their full potential for supporting the development
of distributed systems. Existing multitier languages target the clientśserver model (mostly in web
applications), lacking support for generic distributed architectures. These languages [Chlipala 2015;
Cooper et al. 2007; Philips et al. 2014; Radanne et al. 2016; Rajchenbach-Teller and Sinot 2010;
Reynders et al. 2014; Serrano et al. 2006] focus on issues like the impedance mismatch between
server-side code and JavaScript, integrating database queries and manipulating the DOM. Also, the
web setting allows certain assumptions, like client-driven interaction or stateless REST servers,
which do not hold for generic distributed systems.

In addition, RP and multitier programming are not properly integrated. RP, which focuses on
value propagation through data flows, is a natural fit for distributed applications since they are in
many cases reactive [Eugster et al. 2003; Pietzuch and Bacon 2002]. Events, e.g., network messages
or user input, transfer data among hosts and trigger state changes or new events. Yet, existing
RP abstractions do not cross the boundaries of components and existing multitier languages, e.g.,
Hop [Serrano et al. 2006] or Links [Cooper et al. 2007], do not support RP abstractions. Multitier
languages that provide RP features, e.g., Scala Multi-Tier FRP [Reynders et al. 2014], are limited to
the web domain. Also, some multitier languages that feature RP abstractions, e.g., Ur/Web [Chlipala
2015], confine reactive values to a single component and do not allow defining data flows over
multiple hosts.
We propose ScalaLoci1, a multitier reactive language with a novel combination of abstractions

for distributed applications. First, we propose placement types to associate locations to data ś
rather than to computations only, like existing approaches. Our solution allows going beyond the
web domain and enables static reasoning about placement. Second, we supportmultitier reactives

ś placed abstractions for RP ś which let developers compose data flows spanning over multiple
distributed components. Thanks to this combination of features, we believe that ScalaLoci provides
a significant advance in tackling the complexity of distributed system development.

1http://scala-loci.github.io
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In summary, this paper makes the following contributions:

• We present ScalaLoci’s design to support distributed applications, including in-language
specification of distributed architectures, placement types and reactive abstractions for data
flows over multiple hosts.

• We develop a core calculus for ScalaLoci with a type system to check that the interaction
of remote values and local values is sound and that the application does not violate the
architectural specification. We mechanize the proofs in Coq.

• We provide an implementation based on Scala that compiles multitier code to distributed
components and retains compatibility with existing IDEs.

• We evaluate our approach with case studies ś including Apache Flink, Apache Gearpump
and 22 variants of smaller case studies ś and show that ScalaLoci applications exhibit
better design and are safer. Microbenchmarks and system benchmarks on an Amazon EC2
distributed deployment show that these advantages come at negligible performance cost.

The paper is structured as follows: Section 2 presents the abstractions of ScalaLoci. Section 3
demonstrates ScalaLoci through examples. Section 4 presents ScalaLoci’s fault tolerance mecha-
nism. Section 5 describes the execution model. Section 6 presents a formalization. Section 7 outlines
the implementation. Section 8 discusses the evaluation. Section 9 presents related work. Section 10
concludes.

2 PROGRAMMING ABSTRACTIONS OF SCALALOCI

In this section, we introduce the abstractions supported by ScalaLoci. The next section demonstrates
how their combination simplifies developing distributed systems.

2.1 In-Language Architecture Definitions

In ScalaLoci, the architectural scheme of a distributed system is expressed using peers and ties.
Peers represent the different kinds of components of the system. Ties specify the kind of relation
among peers. Remote access is only possible between tied peers. For instance, the clientśserver
architecture is defined by a server peer and a client peer:2

trait Client extends Peer { type Tie <: Single[Server] }

trait Server extends Peer { type Tie <: Single[Client] }

peer Client ties single[Server]

peer Server ties single[Client]

Both peers have a single tie to each other, i.e., clients are always connected to a single server
instance and each corresponding server instance always handles a single client. A variant of the
clientśserver model, where a single server instance handles multiple clients, is modeled by a single
tie from client to server and a multiple tie from server to client:

trait Client extends Peer { type Tie <: Single[Server] }

trait Server extends Peer { type Tie <: Multiple[Client] }

peer Client ties single[Server]

peer Server ties multiple[Client]

We introduce ScalaLoci’s abstractions with a P2P chat example, where nodes connect directly
among themselves and every node maintains a one-to-one chat with every other connected remote
node. In a P2P architecture, every peer instance can be represented by the same Node peer ś in P2P,
peers are homogeneous. The Node peer has a multiple tie to itself since nodes in a P2P system can
maintain connections to arbitrary other nodes. A Registry peer is used to discover other nodes.

2ScalaLoci is implemented as an embedded Scala DSL. The presented code is valid Scala. To help the reader abstracting

over the rough edges of the embedding concerning the type-level architecture definition, Scala code is complemented with

pseudocode in violet.
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After discovery, nodes do not need to remain connected to the registry. Hence, their relation to the
registry is an optional tie:

trait Registry extends Peer { type Tie <: Multiple[Node] }

trait Node extends Peer { type Tie <: Multiple[Node] with

Optional[Registry] }

peer Registry ties multiple[Node]

peer Node ties multiple[Node] and optional[Registry]

In case a node has more than one tie, ties are expressed by a compound type, e.g., Multiple[Node]
with Optional[Registry] is a multiple tie to a Node peer and an optional tie to a Registry peer.
Thus, peers and ties can specify complex schemes. Multiple ties are the most general case. Optional
ties model a channel that may not be open for the complete up time of the application, forcing
the developer to explicitly deal with such case in the application code. For instance, in our P2P
chat example, nodes do not need to stay connected to the registry for chatting with other nodes,
hence their tie is optional. Restricting the tie to single removes the need of handling the case that
no remote peer instance is connected.

A peer abstracts over instances of the same kind. Yet, during execution, multiple peer instances,
e.g., multiple nodes of peer type Node, can inhabit the system and dynamically connect to other peer
instances at run time. ScalaLoci allows distinguishing among them using remote peer references.
Peer instances of the same type can be accessed uniformly via value aggregation (Section 2.4.1).

2.2 Placement Types

Based on the peers defined in the system architecture, ScalaLoci allows specifying placed data and
computations. Placement is statically defined and part of a value’s type.

2.2.1 Placing Data. In ScalaLoci, placed values of type T on P3 represent a value of type T placed
on a peer P. For example, in our P2P chat application, each Node peer defines an event stream of
outgoing messages, i.e., the stream is placed on the Node peer:

val messageSent: Event[String] on Node = /* stream of outgoing messages */

Event streams of type Event[T] and time-changing values of type Signal[T] are part of
ScalaLoci’s reactive abstractions described in Section 2.3. The messageSent stream is accessible
remotely from other peers to receive the chat messages. Remote visibility of placed values can be
regulated: Shared placed values denoted by the type T sharedOn P specify values placed on a peer P
that can be accessed from other peers. This is the default case (T on P is an alias for T sharedOn P).
Local placed values denoted by the type T localOn P specify values that can only be accessed
locally from the same peer instance. In the P2P chat, the Registry peer maintains an index of all
participants. The index is defined local to the Registry peer to prevent participants from directly
accessing the index:

val participantIndex: Index localOn Registry = /* users registry */

2.2.2 Accessing Placed Data. Accessing remote values (values on another peer instance) requires
the asLocal syntactic marker. With asLocal, we remind developers that a remote access creates
a local representation of the value (e.g., by transmitting it over the network or by establishing
a remote dependency) that can then be used locally. There are two reasons for making remote
communication explicit: First, we want to raise the developers’ awareness of whether they are
accessing a local or a remote value since (i) local and remote accesses have completely different
performance characteristics regarding latency and (ii) remote invocation can potentially fail due to
network communication failures. Second, having explicit syntax for remote access allows selecting
different aggregation schemes, i.e., different ways of abstracting over multiple remote peer instances.

3The Scala compiler treats T on P and on[T,P] equivalently.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 129. Publication date: November 2018.



Distributed System Development with ScalaLoci 129:5

For example, we use asLocal to access the remote value of a single remote peer instance and
asLocalFromAll to access the remote values of multiple remote peer instances in case of a multiple
tie (Section 2.4.1).

The following example demonstrates the remote access to the messageSent event streams of the
chat partners. We assume the existence of a joinMessages function, which collects all incoming
messages into a growing list representing the log of received messages:

val receivedMessages: Signal[List[String]] on Node = placed[Node] { joinMessages(messageSent.asLocalFromAll) }

Thus, this line of code makes the messages sent from remote peer instances (messageSent) locally
available (asLocalFromAll) as the list of received messages (receivedMessages). Since receivedMes-
sages is placed on Node, the expression joinMessages(messageSent.asLocalFromAll) is evaluated
on each Node instance. Placed declarations are initialized with placed[P]{e} expressions. Either
the type argument for placed or the explicit type ascription T on P for the declaration can be left
out since the other can be inferred by the Scala type checker. Either of them is required to specify
the placement ś we want developers to consciously decide on placement. As for the previous
declaration, messageSent is also placed on Node. Thus, every Node instance provides a messageSent
event stream. Since the architecture defines a multiple Node-to-Node tie, the remote access from
a Node instance to another Node instance using asLocalFromAll is correct. In ScalaLoci, peers,
ties, and placements are known statically and the compiler checks that access to remote values
is consistent with the architecture definition. For instance, the following code shows an invalid
remote access, which is statically rejected by the compiler:

val remoteIndex: Index on Registry = placed[Registry] { participantIndex.asLocal }

The remote access via asLocal from the Registry peer to the participantIndex, which is itself
placed on Registry, does not type-check for two reasons: (i) participantIndex is not accessi-
ble remotely since it is a local placed value and (ii) the remote access violates the architecture
specification, which does not specify a Registry-to-Registry tie.
Accessing non-reactive remote values features copy semantics ś changes are not reflected

remotely. Accessing reactive remote values establishes a remote depends-on relation (Section 2.3).

2.3 Multitier Reactives

In the running example of our P2P chat, we already defined the messageSent event and the re-

ceivedMessages signal. Events and signals are ScalaLoci’s reactive abstractions (a.k.a. reactives)
in the style of systems like REScala [Salvaneschi et al. 2014b]. Events model discrete changes.
The following code defines an event stream of type Event[String], which is a sequence of events
carrying a String each, and pushes a new event into the stream:

val messageSent: Event[String] = Event[String]()

messageSent.fire("some message")

Signals model continuous time-changing values which are automatically updated by the language
runtime. For instance, a signal val s3:Signal[Int]=Signal{s1()+s2()} depends on input signals
s1 and s2. The signal expression s1() + s2() is recomputed to update s3 every time s1 or s2 changes.
Signals inside Signal{...} expressions require () to access their current value and register them
as dependencies. Events and signals can interoperate. The following snippet defines a signal that
holds a list of all sent messages:

val sentMessages: Signal[List[String]] = messageSent.fold(List.empty[String]) { (log, message) => message :: log }

Event streams support operations such as folding, mapping, filtering and handler registra-
tion [Maier and Odersky 2013]. For example, the list operator can be used to define the signal
sentMessages as messageSent.list instead of using the fold operator to fold over the event stream
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as shown in the code snippet above. Defining reactives based on other reactives establishes a
depends-on relation between them (e.g., sentMessages depends on messageSent), allowing the
definition of complex data flow graphs with transitive dependencies.
ScalaLoci embraces asynchronous remote communication, which is the default in many dis-

tributed systems for performance and decoupling. Remote access to a reactive via asLocal creates a
local representation of the reactive and extends the data flow graph without blocking. The interface
to the reactive system is safe since accessing the current value of a reactive from imperative code
returns a future to account for asynchronicity and registered handlers are invoked asynchronously.
Asynchronicity only becomes visible when imperative code interfaces the reactive system, e.g.,
a method invocation that fires an event may return before the event reaches remote dependents.
Instead, in the RP style, propagating values asynchronously is transparent to the user. Our consis-
tency model corresponds to the one commonly used in actor systems and implemented by Akka
[2009a]: remote reactives feature at-most-once delivery and order preservation for senderśreceiver
pairs (cf. Section 5). Local propagation is glitch-free [Cooper and Krishnamurthi 2006].

2.4 Peer Instances

Architecture definitions specify peer types and their relation, but the number of connected peer
instances can change over time. Since peers abstract over multiple instances of the same peer type,
remote access to a value T on P may refer to the values of multiple instances of type P. ScalaLoci
offers two options to handle such multiplicity: (i) use an aggregated value over all remote peer
instances or (ii) access a single value of the desired peer instance. A specific instance of type P is
identified by a remote peer reference of type Remote[P].

2.4.1 Aggregation. Accessing a remote value reads a value from each connected peer instance. In
case of a multiple tie, reading a remote value abstracts over connected remote peer instances and
aggregates their value. The aggregation scheme depends on the type of the value. Accessing remote
primitives and standard collections returns a value of type Map[Remote[P], Future[T]] providing a
future ś which is part of Scala’s standard library ś for each remote peer. The future values account
for network latency and possible communication failures by representing a value which may not
be available immediately, but will become available in the future or produce an error.
Accessing remote reactives (i.e., events or signals) creates a dependency to each accessed reac-

tive. Upon remote access, changes of the remote reactives are propagated to the accessing peer.
Accessing a remote reactive yields a value of type Signal[Map[Remote[P], Signal[T]]] for signals
and of type Signal[Map[Remote[P], Event[T]]] for events. The outer signal changes when the list
of connected peers does. The inner reactive corresponds to the reactive on each peer instance
Remote[P]. Reactives subsume the functionalities of futures, i.e., the propagation of remote values
is asynchronous (cf. Section 2.3) and reactives can propagate failures (cf. Section 4).
To make aggregation explicit, we require an asLocalFromAll variant to access multiple remote

instances uniformly. The following code snippet accesses the messageSent event stream of our P2P
chat to aggregate all incoming messages from all the chat partners:

val incoming: Signal[Map[Remote[Node], Event[String]]] on Node = placed[Node] { messageSent.asLocalFromAll }

We additionally provide asLocalFromAllSeq for placed event streams, which aggregates the
event occurrences of all connected remote peer instances into a single local event stream, providing
all event occurrences sequentially in the single stream. This access pattern is often more convenient
for event streams, which represent discrete occurrences:

val incomingSeq: Event[(Remote[Node], String)] on Node = placed[Node] { messageSent.asLocalFromAllSeq }
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In Section 3, we demonstrate how aggregation simplifies treatment of several remote instances
of equal type (Listing 6).

2.4.2 Instance-Based Access. Complementing aggregation, the from operator is used to access a
remote value from a specific peer instance only. The following example shows the remote access to
the messageSent stream of the single peer instance given by node. The messages are then stored in
a time-changing list of type Signal[List[String]] using the list operator on event streams:

def messageLog(node: Remote[Node]): Signal[List[String]] on Node = placed[Node] { (messageSent from node).asLocal.list }

Sometimes, selecting data on the receiver, like from does, is inefficient or insecure. Hence, dually
to from, ScalaLoci provides declarative sender-side selection via subjective values. By default,
every peer instance accessing a shared value reads the same content. In contrast, subjective values
exhibit a different value based on the accessing peer instance. Specifically, the sbj modifier binds
an identifier holding a reference to the peer instance that accesses the subjective value. Using this
identifier, user code can filter the value on a per remote peer instance basis before the value leaves
the local instance. In the P2P chat, every participant can take part in multiple chats simultaneously,
but messages typed by a user should be sent only to the currently selected partner. We achieve this
goal by declaring the messageSent event stream of outgoing messages subjective:

val messageSent = placed[Node].sbj { node: Remote[Node] => ui.messageTyped filter { msg => ui.isSelectedChat(node) } }

The node identifier is used to filter the ui.messageTyped event stream based on the accessing
peer instance for defining the messageSent stream that only contains the messages for the node chat
partner. Crucially, when accessing a subjective declaration, each peer instance łseesž a different
messageSent event stream containing only the messages directed to it.

2.4.3 Dynamic Connections. The remote[P].connected signal provides a time-changing list of
currently connected peer instances of type P. User code is informed about established or lost con-
nections via the remote[P].joined and remote[P].left events. It is possible to setup connections
programmatically at run time using remote[P] connect and providing the address at which the
remote peer instance is reachable.

2.5 Offloading Work: Remote Blocks

Listing 1. Remote blocks.

1 val requestedId = /* ... */

2

3 remote[Registry].capture(requestedId).sbj { requesting: Remote[Node] =>

4 val requested = participantIndex.getRemote(requestedId)

5 val address = participantIndex.getAddress(requesting)

6 remote.on(requested).capture(address) {

7 remote[Node] connect address } }

Distributed systems often require
offloading data processing to other
hosts. As an ingredient of this mech-
anism, ScalaLoci provides remote

blocks, i.e., (sub-)expressions exe-
cuted on remote peer instances. The
value from the remote evaluation of
the block is returned to the instance issuing the block. A remote block expression remote[P]{e}

runs the computation e on every connected peer instance of type P and remote.on(p){e} runs
the computation on the given instance p. Remote blocks only capture (close around) values stated
explicitly via capture and ś like remote access via asLocal (Section 2.2.2) ś feature copy semantics
for non-reactive values. Implicit captures, that may be unintentional, are compilation errors.
Listing 1 shows an excerpt from our P2P chat example to setup the connection between two

peer instances dynamically at run time. The initiating node transfers the connection request to the
requested node through the central registry server, which maintains a connection to both nodes.
The initiating node passes the value of requestedId to the registry via a remote block (Line 3). The
remote block is dispatched subjectively (Section 2.4.2), i.e., therequesting identifier (Line 3) is bound
to a peer remote reference to the initiating node. The registry resolves the remote reference for the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 129. Publication date: November 2018.



129:8 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi

requested peer and the address at which the node is reachable from an internal participantIndex
(Lines 4 and 5). The registry runs a remote block on the requested peer instance (Line 6), which
connects to the initiating node (Line 7) by setting up a dynamic connection via remote[P] connect
(Section 2.4.3).

Remote blocks do not pose a security threat as their semantics does not entail mobile code.
They delimit a functionality executed on another peer instance in a concise way. No code is sent
around, only the values exchanged between the block and the surrounding environment. Also,
the code that a remote block executes remotely is statically known. For placed[PeerA]{val v=x;
remote[PeerB].capture(v){val y=v}}, for example, the code separation into peer-specific code
places val v=x on PeerA and val y=v on PeerB. This placement is fixed after compilation. Only the
value v (which is explicitly captured) is sent from the instance of PeerA to an instance of PeerB.

3 SCALALOCI AT WORK

In this section, we demonstrate, with several complete applications, how the abstractions introduced
in Section 2 help defeating the complexity of developing distributed systems. Multitier code is
syntactically valid and type-correct Scala code. The @multitier annotation gives placement types
special semantics to enable peer-based splitting (Section 7).

Listing 2. Messaging logic for multiple P2P chats.

1 @multitier object P2PChat {

2 trait Node extends Peer { type Tie <: Multiple[Node] }

3

4 val ui: UI on Node = placed { UI() }

5

6 val messageSent = placed[Node].sbj { node: Remote[Node] =>

7 ui.messageTyped filter { _ => ui.isSelectedChat(node) } }

8

9 def messageLog(node: Remote[Node])

10 : Signal[List[String]] on Node = placed {

11 ((messageSent from node).asLocal ||

12 (messageSent to node)).list }

13

14 val chatLogs: List[Signal[List[String]]] on Node = placed {

15 remote[Node].joined.fold(List.empty[Signal[List[String]]]) {

16 (chats, node) => messageLog(node) :: chats } }

17 }

Chat Application: Messaging. Listing 2
concludes the P2P chat example showing
the complete messaging logic. We only
leave out the logic for dynamically setting
up connections, which is already in List-
ing 1. The application logs messages that
are sent and received by each participant
as a composition of the data flow from the
local UI and from remote chat partners. In
the example, nodes are connected to mul-
tiple remote nodes and maintain a one-
to-one chat with each. Users can select
any chat to send messages. The message-
Sent (Line 6) event is defined as subjective
value (Section 2.4.2) filtering the ui.messageTyped messages from the UI (Line 7) for the currently
active chat partner node. The messageLog (Line 9) signal contains the chat log for the chat between
the local peer instance and the remote node given as parameter. It merges the remote stream for
the chat messages from the remote instance node (Line 11) and the local stream subjective to the

remote instance node (Line 12) via the || operator. The event stream resulting from such merge
fires whenever either of both operands fires. The chat log is a signal created using list, which
extends the list by an element for each new event occurrence in the merged stream. The chatLogs
signal folds (Line 15) the remote[Node].joined event stream (cf. Section 2.4.3), which is fired for
each newly connected chat partner, into a signal that contains the chat logs for every chat partner
generated by calling messageLog (Line 16).

Tweets. Next, we show how the operators in a processing pipeline can be placed on different
peers (Listing 3) to count the tweets that each author produces in a tweet stream. The application
receives a stream of tweets on the Input peer (Line 7), selects those containing the "multitier"
string on the Filter peer (Line 8), extracts the author for each tweet on the Mapper peer (Line 9),
and stores a signal with a map counting the tweets from each author on the Folder peer (Line 11).
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Listing 3. Tweet Processing Pipeline.

1 @multitier object TweetProcessing {

2 trait Input extends Peer { type Tie <: Single[Filter] }

3 trait Filter extends Peer { type Tie <: Single[Mapper] with Single[Input] }

4 trait Mapper extends Peer { type Tie <: Single[Folder] with Single[Filter] }

5 trait Folder extends Peer { type Tie <: Single[Mapper] }

6

7 val tweetStream: Event[Tweet] on Input = placed {retrieveTweetStream()}

8 val filtered: Event[Tweet] on Filter = placed {tweetStream.asLocal filter {tweet => tweet.hasHashtag("multitier")}}

9 val mapped: Event[Author] on Mapper = placed {filtered.asLocal map {tweet => tweet.author}}

10 val folded: Signal[Map[Author,Int]] on Folder = placed {

11 mapped.asLocal.fold(Map.empty[Author,Int].withDefaultValue(0)){(map,author)=>map+(author-> (map(author)+1))}}

12 }

Listing 4. Email application.

1 @multitier object MailApp {

2 trait Server extends Peer { type Tie <: Single[Client] }

3 trait Client extends Peer { type Tie <: Single[Server] }

4

5 val word: Signal[String] on Client = placed {/*GUI input*/}

6

7 val days: Signal[Int] on Client = placed {/*GUI input*/}

8

9 val allEmails: Signal[List[Email]] localOn Server =

10 placed {/*e-mail collection*/}

11

12 val filteredEmails: Signal[List[Email]] on Server =

13 placed { Signal {

14 allEmails() filter { email =>

15 (email.date >= Date.today() - days.asLocal()) &&

16 (email.text contains word.asLocal()) } } }

17

18 val inCurrentPage: Signal[Boolean] localOn Client =

19 placed { Signal {

20 isCurrentFirstPage(word(), filteredEmails.asLocal()) } }

21 }

Email Application. Listing 4 shows a
clientśserver e-mail application. The server
stores a list of e-mails. The client can re-
quest the e-mails received in the n previous
days containing a given word. The client
user interface displays the e-mails broken
into several pages. If the word is not in the
current page, the user is informed.
The definition of the word signal of

type Signal[String] on Client (Line 5) de-
fines a signal carrying strings placed on the
Client peer. Thanks to multitier reactives,
the client-side signal inCurrentPage is de-
fined by the composition of the local client-
side signal word and the remote server-side
signal filteredEmails (Line 20). The latter
(Line 12) is defined as a composition of a lo-
cal signal (Line 14) and two remote signals
(Lines 15 and 16).

Listing 5. Token ring.

1 @multitier object TokenRing {

2 trait Prev extends Peer { type Tie <: Single[Prev] }

3 trait Next extends Peer { type Tie <: Single[Next] }

4 trait Node extends Prev with Next {

5 type Tie <: Single[Prev] with Single[Next] }

6

7 val id: Id on Prev = placed { Id() }

8

9 val sendToken: Event[(Id, Token)] localOn Prev = placed {

10 Event[(Id, Token)]() }

11

12 val recv: Event[Token] localOn Prev = placed {

13 sent.asLocal collect {

14 case (receiver, token) if receiver == id => token } }

15

16 val sent: Event[(Id, Token)] on Prev = placed {

17 (sent.asLocal \ recv) || sendToken }

18 }

Token Ring. We model a token ring (List-
ing 5), where every node in the ring can
send a token for another node. Multiple
tokens can circulate in the ring simultane-
ously until they reach their destination. Ev-
ery node has exactly one predecessor and
one successor. We define a Prev and a Next
peer and specify that a Node itself is both a
predecessor and a successor and has a single
tie to its own predecessor and a single tie
to its successor. Using multiple ties would
allow nodes to join and leave updating the
ring dynamically but is not discussed fur-
ther. Tokens are passed from predecessors
to successors, hence nodes access the tokens
sent from their predecessor. For this reason, values are placed on the Prev peer. Every node has
a unique ID (Line 7). The sendToken event (Line 9) sends a token along the ring to another peer
instance. The recv event stream (Line 12) provides the data received by each peer instance. Each
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Listing 6. Master–worker.

1 @multitier object MasterWorker {

2 trait Master extends Peer { type Tie <: Multiple[Worker] }

3 trait Worker extends Peer { type Tie <: Single[Master] }

4

5 case class Task(v: Int) { def exec: Int = 2 * v }

6

7 val taskStream: Event[Task] localOn Master = placed { Event[Task]() } // to add tasks: t̀askStream.fire(Task(42))̀

8

9 val assocs: Signal[Map[Remote[Worker], Task]] localOn Master = placed {

10 (taskStream || taskResult.asLocalFromAllSeq).fold(Map.empty[Remote[Worker], Task], List.empty[Task]) {

11 (taskAssocs,taskQueue,taskChanged)=>assignTasks(taskAssocs,taskQueue,taskChanged,remote[Worker].connected)}}

12

13 val deployedTask = placed[Master].sbj { worker: Remote[Worker] => // Signal[Task]

14 Signal { assocs().get(worker) } }

15 val taskResult = placed[Worker] { // Event[Int]

16 deployedTask.asLocal.changed collect { case Some(task) => task.exec } }

17 val result = placed[Master] { // Signal[Int]

18 taskResult.asLocalFromAllSeq.fold(0) { case (acc, (worker, result)) => acc + result } }

19 }

node fires recv when it receives a token addressed to itself, i.e., when the receiver equals the node
ID (Line 14) and forwards other tokens. The expression sent.asLocal\recv (Line 17) evaluates
to an event stream of all events from sent.asLocal for which recv does not fire. Merging such
stream (of forwarded tokens) with the sendToken stream via the || operator injects both new and
forwarded tokens into the ring.

Masterśworker. We now show a ScalaLoci implementation of the masterśworker pattern (List-
ing 6) where a master node dispatches tasks ś double a number, for simplicity ś to workers.
The taskStream on the master (Line 7) carries the tasks (Line 5) as events. The assocs signal
(Line 9) contains the assignments of workers to tasks. It folds over the event stream taskStream ||

taskResult.asLocalFromAllSeq that fires for every new task (taskStream) and every completed
task (taskResult.asLocalFromAllSeq). The assignTasks method (Line 11) assigns a worker to the
new task (taskAssocs), or enqueues the task if no worker is free (taskQueue) based on the folded
event (taskChanged) and the currently connected worker instances (remote[Worker].connected).
The deployedTask signal (Line 13) subjectively provides every worker instance with the task it is
assigned. Workers provide the result in the taskResult event stream (Line 15), which the master
aggregates into the result (Line 17) signal. The signal is updated for every event to contain the
sum of all values carried by the events.

4 FAULT TOLERANCE

To handle failures, we provide amechanism that unifies reactives and supervision à la actors. The key
idea is that the depends-on relation between reactives establishes a supervisor-of relation, where the
supervisor is notified if a supervised reactive fails. For example, in e.filter(_>10).map(_.toString)

the map reactive depends on the filter reactive and map supervises filter. One can take two
perspectives on this mechanism.

From the RP perspective, reactives propagate Err upon failure. Signals and events can carry the
successfully computed value v or Err. If, during reevaluation, a reactive accesses an Err value of
a reactive it depends on, the recomputation fails (i.e., the computation is skipped, like in Akka
[2009c] actors), and the reactive also emits Err. Propagation of errors along the data flow graph is in
line with the approaches taken by Rx [Meijer 2010] and Reactive Streams [2014] (and the Reactive
Streams implementations RxJava and Akka Streams). A reactive can (i) ignore computation failures
(e.recover{err=>Drop}) or (ii) handle them replacing Err by a v (e.recover{err=>Revive(v)}).
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A reactive carrying Err holds a success value v again as soon as it reevaluates to v upon new input.
Thus, a failed computation does not prevent processing further input.

The other perspective is about supervision relations. To supervise a reactive computation r, one
simply declares another reactive that depends on r, which then becomes the supervisor, like in
actors, and receives Err if the supervised reactive fails. A supervisor can (i) ignore notifications of
failure or (ii) handle them implementing a recovery strategy.

Our mechanism supports the most common cases for reactives, ScalaLoci’s main communication
abstraction, still retaining the full generality of supervision relations that proved effective in the
actor model. This mechanism allows monitoring reactive computations that are not necessarily
arranged as trees ś trees are a special case. Similarly, Akka supports monitoring schemes (beside
supervision trees) that allow arbitrary monitoring relations [Akka 2009e]. For streams, for example,
one can neglect the cases that produce a failure (e.g., with spurious data in big data analytics),
generate default values that track failed cases, or check the successful processing of an event through
a complete stream pipeline by creating a stream of acknowledgments (or Err) from the sink to the
source (cf. Section 5, Listing 7), similar to how bolts acknowledge the successful processing of a
tuple in Apache Storm [2011]. Failures in the generated communication layer occur in case a remote
connection breaks or cannot be established. Accessing a remote reactive which is not connected
(anymore) also propagates an error value Err, thus making user code aware of communication
failures. Generality is achieved building on top of the Err propagation/supervision mechanism,
to allow custom fault handling strategies. For example, a supervisor can emit an event inducing
all reactives in the system to reset their internal state, the equivalent of the one_for_all Erlang
recovery strategy [Erlang 1987b].
We demonstrate our approach augmenting the masterśworker example (Listing 6). A first

improvement is that the master simply ignores tasks that cause a worker to fail. This is achieved
by dropping Err before it propagates to fold in Line 18. The result signal depends on the workers’
taskResult using taskResult.asLocalFromAllSeq, which performs event aggregation (Section 2.3)
and establishes a supervision relation. A small change to the result signal (in gray) suffices:

taskResult.asLocalFromAllSeq.recover{ err => Drop }.fold(...)

After merging events from all workers, all Err values are dropped from the stream, and fold

processes only successfully computed values v. A second improvement is to introduce a stream of
failed tasks for diagnostics:

val failedTasks: Report on Master = placed {

taskResult.asLocalFromAllSeq

.recover { err => Revive(Report(assocs().get(err.remote))) }

.collect { case report @ Report(_) => report } }

The failedTasks stream first replaces events carrying Err by a Report value (using the recover
operator withRevive). The report contains the task associated with the disconnected worker remote
peer instance (via assocs). Finally, reports are collected, filtering out successfully completed tasks.
Machine failures or network connection losses affect all reactives on the lost peer instance. To

react to a disconnection, peer instances monitor the peer instances they are connected to. A peer
instance is informed about a disconnection via the remote[P].left event (Section 2.4.3) and can
take countermeasures. This mechanism is similar to how Akka detects that the communication
to a remote actor fails. The monitoring actor receives a Terminated message for the monitored
actor [Akka 2009d]. In the third improvement, the master reassigns the task that was running on
the disconnected worker to another worker via an event stream of tasks to redeploy:

val redeploy = placed[Master] { remote[Worker].left map { worker => assocs().get(worker) } }
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The redeploy event stream maps every disconnected worker remote reference (provided by
remote[Worker].left) to the task to which the respective worker was assigned (via assocs), result-
ing in a stream of tasks that were assigned to disconnected worker instances. The assocs signal
(Listing 6, Line 9) computing the assignments of workers to tasks also needs to be updated to
consider the tasks to be redeployed, additionally folding over the redeploy event stream (Line 10):

(taskStream || taskResult.asLocalFromAllSeq || redeploy).fold(...)

5 EXECUTION MODEL AND LIFE CYCLE

Listing 7. At-least-once delivery on top of ScalaLoci.

1 val missing: Signal[Set[Data]] on PeerA = placed {

2 (send || ack.asLocal).fold(Set.empty[Data]) {

3 case (missingAcks, Ack(v: Data)) => missingAcks - v

4 case (missingAcks, v: Data) => missingAcks + v } }

5

6 val resend: Event[Data] on PeerA = placed {

7 timeout collect { case _ if missing().nonEmpty =>

8 missing().head } }

9

10 val msg: Event[Data] on PeerA = placed { send || resend }

11 val ack: Event[Ack[Data]] on PeerB = placed {

12 msg.asLocal map { v => Ack(v) } }

Consistency. ScalaLoci adopts the consis-
tency model found in many actor systems:
(1) at-most-once delivery (i.e., delivery is not
guaranteed and dropped messages are lost) for
remote reactives and (2) order preservation
for senderśreceiver pairs [Akka 2009b; Erlang
1987a]. Similar to actors, a developer can im-
plement stronger consistency manually on top
of ScalaLoci. For example, to achieve at-least-
once delivery, events can be re-sent until they
are acknowledged. In Listing 7, a send event
on PeerA transfers some payload of type Data to PeerB. A timeout event is regularly fired to
implement the timeout for pending acknowledgments. The msg event (Line 10), which is a send
event or a resend event after the timeout expired, is read on PeerB (Line 12). In the example,
the msg event is sent back wrapped in an Ack acknowledgment (Line 12). On PeerA, we fold over
the send||ack.asLocal event stream (Line 2), adding all sent events to the set of events awaiting
acknowledgment (Line 4) and removing all acknowledged events from the set (Line 3). Every time
timeout fires, the resend event (Line 6) fires for one of the events that are not acknowledged yet.
For simplicity, in the example, we do not preserve ordering.

Given the abstraction level of ScalaLoci (reactives, multitier programming), however, we expect
that developers do not implement higher consistency levels themselves. Hence, ScalaLoci allows
developers to choose among different reactive systems with different levels of consistency. For
simplicity, we do not cover this modular architecture in the paper. We just assume the single
consistency model based on (1) and (2). Yet, we currently support several backends, e.g., Rx [Meijer
2010] as well as one that provides stronger consistency guarantees [Drechsler et al. 2014].

Cycles. ScalaLoci allows defining software that entails distributed cycles, such as in the Token
Ring application (Listing 5). In this example, a node in the ring receives a token via the sent event
from its predecessor and (i) either emits it again via its sent event to be processed by the successor
node (forming a cycle of sent events along the nodes in the ring) or (ii) processes the token and
removes it from cycling through the ring. The reactive model used by ScalaLoci allows sending
events along peer instances that are arranged in a cycle since messages are sent from one instance
to another asynchronously (similar to messages in actor systems). After sending an event to a
remote instance, the local instance continues processing incoming events. In particular, incoming
events may be events that were originally sent by the local instance and are reaching the local
instance again through a cycle. With this model, events can cycle around in the system being passed
on to the next node until they are consumed and removed from the cycle.

Execution Order and Concurrency. Placed values are initialized at bootstrap on each peer instance.
The evaluation of placed expressions adheres to the standard Scala semantics: variable declarations
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(val or var) are evaluated in defintion order, lazy values (lazy val) are evaluated upon first access
and method definitions (def) are evaluated on each access. ScalaLoci, by default, uses a single
thread for evaluating values and computing remote blocks initiated by remote instances. This
behavior can be adapted, e.g., using a thread pool to improve concurrent access. Sequential remote
accesses from the same remote instance are evaluated in the same order but there are no guarantees
for the remote access by different instances.

Listing 8. Automatic connection setup.

1 @multitier object MyApp {

2 trait Server { type Tie = Single[Client] }

3 trait Client { type Tie = Single[Server] }

4 }

5

6 object ServerApp extends App {

7 multitier.start[MyApp.Server] {

8 listen[MyApp.Client] { TCP(1099) } }

9 }

10

11 object ClientApp extends App {

12 multitier.start[MyApp.Client] {

13 connect[MyApp.Server] { TCP("example.com", 1099) } }

14 }

Bootstrapping. A multitier application is boot-
strapped by calling multitier.start[P], start-
ing an instance of peer P on the local host and au-
tomatically setting up the specified connections.
Listing 8 shows the setup for a clientśserver ap-
plication. The Server listens on the tie towards
the Client. The Client connects via the tie to-
wards the Server. For each tie, a peer instance
can either initiate the communication (connect)
or wait for incoming connections (listen). A peer
instance can connect to a single remote instance
on a single or optional tie and to an arbitrary
number of remote instances on a multiple tie. In case a peer instance listens on a single or optional
tie, a new local peer instance is created for each incoming connection. This is commonly the case
in the clientśserver setting: a new server instance starts upon each request. In contrast, when a
peer listens on a multiple tie, a single local peer instance handles all incoming connections.

The dynamic counterpart to the automatic connection setup for establishing connections at run
time is introduced in Section 2.4.3, e.g., using remote[Server] connect TCP("example.com",1099).

Deployment. To deploy a ScalaLoci application on the JVM, we generate Java bytecode that can
be packaged into JAR files as usual. For web deployment, we generate Java bytecode for the server
and JavaScript code for the client. The client code connects to the server using HTML5 WebSockets.
ScalaLoci can potentially work with any web server to answer the initial HTTP request from the
browser and serve the generated JavaScript code. We implemented example applications using
Akka HTTP [2016] and the Play Framework [2007] for web applications as HTTP servers.

ScalaLoci peers on different hosts can be updated independently as long as there are no changes
to the signature of placed values accessed by remote instances. Changing the signature of placed
values requires that all affected peers are updated to avoid incompatibilities.

6 FORMALIZATION

We formalize a core calculus for ScalaLoci that models peers, placement, remote access, remote
blocks and reactives (only signals, for simplicity). The formalization describes the core concepts
of ScalaLoci and is a basis to prove our system sound regarding static types and placement. We
implemented the calculus in Coq [Coq Development Team 2016] and mechanized the proofs.

6.1 Syntax

The syntax is in Figure 1. Types are denoted by T . Types of values that can be accessed remotely
and transmitted over the network are denoted byU . Placement types S (cf. Section 2.2) are defined
based on a numerable set of peer type names P. Since Scala has no native notion of peers, we
encode peers by subclassing Peer in the Scala embedding. P corresponds to the set of all Peer
subclasses in the embedding. Besides standard terms, t includes remote access (cf. Section 2.2.2,
remote blocks (cf. Section 2.5) and reactives (cf. Section 2.3). Remote access via asLocal is explicitly
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l ::= (T, S, I, s) program

s ::= placed x : S = t in s | end placement term

t ::= λx :T . t | t t | x | unit | standard term

none ofT | some t | nil ofT | cons t t |

asLocal x : S [ from t ] | remote access term

asLocal block x :T = t in t : S [ from t ] | remote block term

signal t | var t | now t | set t := t | p | reactive term

r | ϑ | asLocal t : S | asLocal t : S [ from t ] intermediate term

v ::= λx :T . t | unit | end | p | r | ϑ | value

none ofT | somev | nil ofT | consv v

T ::= OptionT | ListT | SignalT | VarT | T → T | U type

U ::= OptionU | ListU | SignalU | Remote P | Unit transmittable type

S ::= T on P placement type

P ∈ P peer

T : P × P → {multiple, optional, single, none} ties

S : I → P peer instance type

p = {i } ⊆ ϑ ⊆ I peer instance

Fig. 1. Syntax.

ascribed with a type S for the
accessed value. We model both
aggregation over all remote val-
ues of connected peer instances
(cf. Section 2.4.1) ś but we do not
distinguish syntactically between
different variants of asLocal for
aggregation ś and selecting a
specific peer instance using the
from operator (cf. Section 2.4.2).
A program l = (T,S,I, s) con-
sists of the architecture defined
via the ties T (cf. Section 2.1),
the peer types S for peer in-
stances I and the definition of
placed values, modeled as nested
end-terminated s-terms binding
t-terms to names. Thus, s-terms express placed bindings and t-terms are placed expressions, which
evaluate to the value that is bound (cf. Section 2.2.1). Placement defined by a term s binds an
identifier x of type S to a term t , where S specifies the placement. We consider a fixed set I of
peer instances that can participate in the evaluation of the program and S a mapping from peer
instances to their peer type P . There can be multiple individual peer instances p ∈ I of a peer type
P (cf. Section 2.4). A remote peer reference, which is typed as Remote[P] in the Scala embedding, is
given the type Remote P in the formal development. T specifies the tie multiplicity of each two
peers. We adopt the notation P0

∗
↣ P1 iff T(P0, P1) = multiple, P0 ?

↣ P1 iff T(P0, P1) = optional,
P0

1
↣ P1 iff T(P0, P1) = single, P0 0

↣ P1 iff T(P0, P1) = none and P0 ↔ P1 iff T(P0, P1) , none and
T(P1, P0) , none. Ties between two peers P0, P1 ∈ P are statically defined and directly correspond
to ties between Peer subclasses in the embedding, defined through type Tie at the type level.
Reactives include Vars, which can be set explicitly, and Signals. Both can be accessed to read the
current value. Syntactic forms that are not part of the program language and arise only in the
evaluation are highlighted in gray.

6.2 Dynamic Semantics

We first introduce the auxiliary construct I[P ] used in the rest of the formalization to denote the set
of all peer instances of type P , i.e., I[P ]

= {p ∈ I | S(p) = P}. Note that I[P1] and I[P2] are disjoint
for two distinct P1 and P2. Ties T are statically known and constrain the run time connections in a
system, e.g., there can only be a single connection for a single tie but an arbitrary number for a
multiple one. For simplicity, we do not model dynamic connections, assuming fixed connections

along the defined ties T. Each peer instance is connected to all remote instances I[P ] for every tied
peer type P . We constrain the number of peer instances for every peer type as follows:

Definition 1. For all P0, P1 ∈ P holds (i) P0 1
↣P1 =⇒

��I[P1]
��
= 1 and (ii) P0 ?

↣P1 =⇒
��I[P1]

�� ≤ 1.

Figure 2 shows the auxiliary functions to transmit and aggregate over remote values. ζ models
remote value transmission from peer instances ϑ of peer type P1, all of which provide the remote
value v of type T . Traditional values, such as options or lists, do not change during transmission.
Signals are transmitted by creating a local signal that reevaluates the remote signal remotely on
the peer instances on which it is placed. When accessing a remote value on peer instances of type
P1 from local peer instances of type P0, the aggregation results either in a list of all remote values,
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ζ (P1, ϑ , none of T
′
, T ) = none of T ′

ζ (P1, ϑ , nil of T
′
, T ) = nil of T ′

ζ (P1, ϑ , unit, T ) = unit

ζ (P1, ϑ , ϑ
′
, T ) = ϑ ′

ζ (P1, ϑ , somev, OptionT ) = some ζ (P1, ϑ , v, T )

ζ (P1, ϑ , consv0 v1, ListT ) = cons ζ (P1, ϑ , v0, T ) ζ (P1, ϑ , v1, ListT )

ζ (P1, ϑ , r, SignalT ) = signal asLocal block x : Unit = unit in now r :T on P1 fromϑ with x fresh

Φ(P0, P1, T ) =




ListT for P0
∗
↣ P1

OptionT for P0 ?
↣ P1

T for P0 1
↣ P1

P0
1
↣ P1 t ′ = ζ (P1, p, v, T )

φ(P0, P1, p, v, T ) = t
′

(A-Value)

P0 ?
↣ P1 t ′ = ζ (P1, p, v, T )

φ(P0, P1, p, v, T ) = some t ′

(A-Some)

P0 ?
↣ P1

φ(P0, P1, �, v, T ) = none of T
(A-None)

P0
∗
↣ P1 t ′ = ζ (P1, p, v, T )
t = φ(P0, P1, ϑ , v, T )

φ(P0, P1, p Û∪ϑ , v, T ) = cons t ′ t
(A-Cons)

P0
∗
↣ P1

φ(P0, P1, �, v, T ) = nil of T
(A-Nil)

Fig. 2. Auxiliary functions ζ for transmission and φ and Φ for aggregation.

in an option of the remote value or in the remote value directly depending on the tie between P0
and P1. φ constructs a term t ′ that represents the aggregated result and Φ specifies its type.

Reduction Rules. To preserve the single multitier flavor of ScalaLoci, we model the evaluation as
a single thread of execution annotating the reduction relation with a set of peer instances ϑ on
which an evaluation step takes place, i.e., the reduction step takes place on all peer instances in ϑ .

The reduction relation s ; ρ ϑ−↠ s ′; ρ ′ reduces the placement term s and the reactive system ρ to s ′

and ρ ′ taking a single step on a set of peer instances ϑ . The reactive system ρ stores the reactive
values created during the execution. More details about ρ are only relevant to the rules dealing
with reactive terms (Figure 3d, described below). The reduction relation ϑ : P ▷ t ; ρ ϑ ′

−→ t ′; ρ ′ for a
term t placed on the peer instances ϑ of peer type P and a reactive system ρ evaluates to a term t ′

and a reactive system ρ ′ by taking a step on a set of peer instances ϑ ′. The rules are in Figure 3.
The rules in Figure 3a for reducing a term t are standard except that they are extended with the

reactive system ρ and the peer instances where the evaluation takes place. E-App steps on ϑ when
evaluating on the peer instances ϑ : P . E-Context evaluates E[t] on ϑ when t steps on ϑ .

The reduction rules for placement terms s are in Figure 3b. A term placedx :T on P = t in s defines
a placed value by binding the value of t to x in scope of s (cf. Section 2.2.1). E-Placed evaluates a
placed term t on all instances I[P ]: P of the peer type given by the placement type T on P . The set
ϑ denotes the peer instances where the evaluation steps. E-PlacedVal substitutes an evaluated
placed value v in all instances I.
The reduction rules for remote access terms t are in Figure 3c. The variants of asLocal model

remote access to placed values and remote blocks (cf. Section 2.2.2). E-AsLocal accesses the
remote value v on peer instances of type P1 from the local instances ϑ of type P0. The result is
an aggregation φ (Figure 2) over all remote values (cf. Section 2.4.1). By assuming that every peer
instance is connected to all instances of a tied peer type and Definition 1, the values of all peer
instances I[P1] are aggregated. The evaluation steps on ϑ to provide the aggregated remote value to
all instances ϑ . Similarly, E-AsLocalFrom provides the remote value v from the remote instances ϑ ′

to all local instances ϑ (cf. Section 2.4.2). E-Block applies the value v to a remote block t computed
remotely on the peer instances of type P1. A remote block term asLocal blockx :T0 = t0 in t1 :T1 on P
evaluates t0, binds the result to x in the scope of t1 and evaluates t1 remotely on the instances of P
(cf. Section 2.5). The resulting value of the remote evaluation of type T1 is provided to the invoking
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E ::= E[·] | E t | v E | some E | cons E t | consv E |

asLocal t : S from E | asLocal block x :T = E in t : S | asLocal block x :T = t in t : S from E |

asLocal block x :T = E in t : S fromv | var E | now E | set E := t | setv := E

ϑ : P ▷ t ; ρ
ϑ
′

−−→ t ′; ρ′

ϑ : P ▷ E[t ]; ρ
ϑ
′

−−→ E[t ′]; ρ′
(E-Context)

ϑ : P ▷ λx :T . t v ; ρ
ϑ
−→ [x 7→ v]t ; ρ

(E-App)

(a) Standard terms.

I[P ]: P ▷ t ; ρ
ϑ
−→ t ′; ρ′

placed x :T on P = t in s ; ρ
ϑ
−↠ placed x :T on P = t ′ in s ; ρ′

(E-Placed)
placed x :T on P = v in s ; ρ

I
−↠ [x 7→ v]s ; ρ

(E-PlacedVal)

(b) Placement terms.

t ′ = φ(P0, P1, I
[P1]

, v, T )

ϑ : P0 ▷ asLocalv :T on P1; ρ
ϑ
−→ t ′; ρ

(E-AsLocal)
t ′ = ζ (P1, ϑ

′
, v, T )

ϑ : P0 ▷ asLocalv :T on P1 fromϑ ′; ρ
ϑ
−→ t ′; ρ

(E-AsLocalFrom)
t ′ = ζ (P0, ϑ , v, T0)

ϑ : P0 ▷ asLocal block x :T0 = v in t :T1 on P1; ρ
I[P1]

−−−−→
asLocal [x 7→ t ′]t :T1 on P1; ρ

(E-Block)

t ′ = ζ (P0, ϑ , v, T )

ϑ : P0 ▷ asLocal block x :T = v in t : S fromϑ ′; ρ
ϑ
′

−−→
asLocal [x 7→ t ′]t : S fromϑ ′; ρ

(E-BlockFrom)

I[P1]: P1 ▷ t ; ρ
ϑ
′

−−→ t ′; ρ′

ϑ : P0 ▷ asLocal t :T on P1; ρ
ϑ
′

−−→
asLocal t ′ :T on P1; ρ

′

(E-Remote)
ϑ ′′: P1 ▷ t ; ρ

ϑ
′

−−→ t ′; ρ′

ϑ : P0 ▷ asLocal t :T on P1 fromϑ ′′; ρ
ϑ
′

−−→
asLocal t ′ :T on P1 fromϑ ′′; ρ′

(E-RemoteFrom)
(c) Remote access terms.

r < dom(ρ)

ϑ : P0 ▷ varv ; ρ
ϑ
−→ r ; (ρ, r 7→ v)

(E-SourceVar)
r < dom(ρ)

ϑ : P0 ▷ signal t ; ρ
ϑ
−→ r ; (ρ, r 7→ t )

(E-Signal)

ϑ : P0 ▷ set r := v ; ρ
ϑ
−→ unit; [r 7→ v]ρ

(E-Set)
t = ρ(r )

ϑ : P0 ▷ now r ; ρ
ϑ
−→ t ; ρ

(E-Now)

(d) Reactive terms.

Fig. 3. Operational semantics.

peer instances via E-AsLocal. E-Remote takes a step in a remote block on the peer instances I[P1]

of type P1. Similarly, E-BlockFrom and E-RemoteFrom evaluate remote blocks on a single remote
instance p.
The rules for reactive terms t in Figure 3d step on the peer instances ϑ where t is placed and

model a pull-based reactive system, where reactives are given semantics as store locations in ρ that
contain values v for Vars and thunks t for Signals. The pull-based scheme recomputes the value of
a signal r and the signals on which r depends upon each access to r . Designing new propagation
systems, e.g., push [Maier et al. 2010] push-pull [Elliott 2009], memory-bounded [Krishnaswami
et al. 2012], glitch-free [Drechsler et al. 2014], fair [Cave et al. 2014], is ongoing research. We leave
extending our model with such approaches for future work.

6.3 Static Semantics

The type system guarantees that cross-peer access is safe and consistent with the architecture
defined through ties T. It rejects programs where remote values are mixed with local values without
converting them via asLocal or where a remote value is accessed on a peer that is not tied.
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x :T ∈ Γ ∨ x :T on P ∈ ∆

Ψ;∆; Γ; P ⊢ x : T
(T-Var)

Ψ;∆; Γ, x :T1; P ⊢ t : T2

Ψ;∆; Γ; P ⊢ λx :T1 . t : T1 → T2
(T-Abs)

Ψ;∆; Γ; P ⊢ t1 : T2 → T1
Ψ;∆; Γ; P ⊢ t2 : T2

Ψ;∆; Γ; P ⊢ t1 t2 : T1
(T-App)

(a) Standard terms.

Ψ;∆, x :T on P ⊢ s
Ψ;∆;�; P ⊢ t : T

Ψ;∆ ⊢ placed x :T on P = t in s
(T-Place)

Ψ;∆ ⊢ end
(T-End)

(b) Placement terms.

ϑ ⊆ I[P1]

Ψ;∆; Γ; P0 ⊢ ϑ : Remote P1
(T-Peer)

Ψ;∆;�; P1 ⊢ t : U P0 ↔ P1 T = Φ(P0, P1, U )

Ψ;∆; Γ; P0 ⊢ asLocal t :U on P1 : T
(T-AsLocal)

Ψ;∆;�; P1 ⊢ t0 : U P0 ↔ P1 Ψ;∆; Γ; P0 ⊢ t1 : Remote P1

Ψ;∆; Γ; P0 ⊢ asLocal t0:U on P1 from t1 : U
(T-AsLocalFrom)

Ψ;∆; Γ; P0 ⊢ t0 : U0 Ψ;∆; x :U0; P1 ⊢ t1 : U1
P0 ↔ P1 T = Φ(P0, P1, U1)

Ψ;∆; Γ; P0 ⊢ asLocal block x = t0:U0 in t1 :U1 on P1 : T
(T-Block)

Ψ;∆; Γ; P0 ⊢ t0 : U0 Ψ;∆; x :U0; P1 ⊢ t1 : U1
P0 ↔ P1 Ψ;∆; Γ; P0 ⊢ t2 : Remote P1

Ψ;∆; Γ; P0 ⊢ asLocal block x = t0:U0 in t1 :U1 on P1 from t2 : U1

(T-BlockFrom)

(c) Remote access terms.

T0 on P = Ψ(r )
T0 = SignalT1 ∨ T0 = VarT1

Ψ;∆; Γ; P ⊢ r : T0
(T-Reactive)

Ψ;∆; Γ; P ⊢ t : T

Ψ;∆; Γ; P ⊢ signal t : SignalT
(T-Signal)

Ψ;∆; Γ; P ⊢ t : T

Ψ;∆; Γ; P ⊢ var t : VarT
(T-SourceVar)

Ψ;∆; Γ; P ⊢ t : T0
T0 = SignalT1 ∨ T0 = VarT1

Ψ;∆; Γ; P ⊢ now t : T1
(T-Now)

Ψ;∆; Γ; P ⊢ t1 : VarT Ψ;∆; Γ; P ⊢ t2 : T

Ψ;∆; Γ; P ⊢ set t1 := t2 : Unit
(T-Set)

(d) Reactive terms.

Fig. 4. Typing rules.

The typing judgment Ψ;∆ ⊢ s states that s is well-typed under Ψ and ∆. The typing judgment
Ψ;∆; Γ; P ⊢ t : T for terms t says that t is well-typed under Ψ, ∆ and Γ in the peer context P ,
i.e., the peer on which term t is placed. Γ ::= � | Γ,x :T is the typing environment for variables,
∆ ::= � | ∆,x : S is the typing environment for placed variables. We require that the name x is
distinct from the variables bound by both Γ and ∆, which can always be achieved by α-conversion.
Ψ is the typing environment for reactives. It ranges over mappings from reactives to placement
types S . The values held by a reactive always have the same type, which is fixed at creation time of
the reactive. The typing rules are in Figure 4.
The typing rules for terms t in Figure 4a are standard except for T-Var where the type for x is

looked up in both Γ and ∆. When in the peer context P , the local x ś a locally scoped variable in
Γ or a value placed on P in ∆ ś is accessed simply through x . We omit the standard rules T-Unit,
T-Cons, T-Nil, T-Some and T-None.

The typing rules for placement terms s are in Figure 4b. T-Place types the term t of type T on P
in the peer context P and extends the environment for placed variables ∆ with the type of x . Placed
values are modeled as a series of nested s-terms ending in end typed by T-End.

The typing rules for remote access terms t are in Figure 4c. T-Peer types peer instances ϑ of
peer type defined by P1. T-AsLocal types remote access to a term t placed on peer P1 in the peer
context P0. The rule ensures that the type ascription U on P1 is correct for the placed term t by
deriving typeU for t in the peer context P1. The rule ensures that P0 is tied to P1. Remote access
aggregates over remote values (cf. Section 2.4.1) and the type of the aggregation is defined by Φ
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(Figure 2). Similarly, T-AsLocalFrom types remote access to the remote instances given by t1 of
type Remote P1 (cf. Section 2.4.2). The rule ensures that t1 refers to remote peer instances of peer
type P1, where t0 of type U is placed. T-Block types the application of t0 to the remote block t1
on peer P1. The term t0 is typed in the context of the local peer P0. The block t1 is typed in the
context of the remote peer P1. The environment Γ for typing t1 consists only of the typing for
x to prevent the block from implicitly closing over remote values, i.e., variables must be passed
explicitly (cf. Section 2.5). Similarly, T-BlockFrom types a remote bock on a single remote instance.
The typing rules for reactive terms t are in Figure 4d. T-Reactive types a reactive r of the type

defined by Ψ. T-Signal types signal expressions and T-SourceVar types Var instantiations. T-Set
requires that the term t1 to be set to a new value is a Var. T-Now requires that the term t to be read
is either a Var or a Signal.

6.4 Type Soundness

Proving type soundness requires some auxiliary definitions and lemmas. First, we show that a
transmitted remote value as modeled by ζ (Figure 2) can be typed on the local peer:

Lemma 1 (Transmission). If P0 ↔ P1 for two peers P0, P1 ∈ P and Ψ;∆; Γ; P1 ⊢ v : U and

t =ζ (P1,ϑ ,v,U ) for some ϑ ∈I[P1], then Ψ;∆′; Γ′; P0 ⊢ t : U for any ∆
′and Γ

′.

Proof. By induction on v . □

Second, we show that aggregation modeled by φ yields the type given by Φ:

Lemma 2 (Aggregation). If P0 ↔ P1 for two peers P0, P1 ∈ P and Ψ;∆; Γ; P1 ⊢ v : U and

t =φ(P0, P1,ϑ ,v,U ) andT =Φ(P0, P1,U ) for some ϑ ∈I[P1], then Ψ;∆′; Γ′; P0 ⊢ t : T for any ∆′and Γ′.

Proof. By induction on ϑ in the case P0
∗
↣ P1 and the transmission lemma. □

Next, we provide a definition of typability for a reactive system ρ. We denote with refs(ρ) the
set of all reactive references allocated by ρ:

Definition 2. A reactive system ρ is well-typed with respect to typing contexts ∆, Γ and a reactive
typing Ψ, written Ψ;∆; Γ ⊢ ρ, iff refs(ρ) = dom(Ψ) and Ψ;∆; Γ; P ⊢ ρ(r ) : T with Ψ(r ) = VarT on P
or Ψ(r ) = SignalT on P for every r ∈ refs(ρ).

We prove type soundness based on the usual notion of progress and preservation [Wright and
Felleisen 1994], meaning that well-typed programs do not get stuck during evaluation. We first
formulate progress and preservation for terms t :

Theorem 1 (Progress on t-terms). Suppose t is a closed, well-typed term (that is, Ψ;�;�; P ⊢ t : T
for some T , P and Ψ). Then either t is a value or else, for any ϑ and any reactive system ρ such that

Ψ;�;� ⊢ ρ, there is some term t ′, some ϑ ′ and some reactive system ρ ′ with ϑ : P ▷ t ; ρ ϑ ′

−→ t ′; ρ ′.

Proof. By induction on the typing derivation. Case T-AsLocal steps with E-Remote or E-AsLocal,
T-AsLocalFrom steps with E-Context, E-RemoteFrom or E-AsLocalFrom, T-Block steps with E-

Context or E-Block, T-BlockFrom steps with E-Context or E-BlockFrom, T-Signal steps with
E-Signal, T-SourceVar steps with E-Context or E-SourceVar, T-Now steps with E-Context or
E-Now and T-Set steps with E-Context or E-Set. □

Theorem 2 (Preservation on t-terms). If Ψ;∆; Γ; P ⊢ t : T and Ψ;∆; Γ ⊢ ρ and ϑ : P ▷t ; ρ ϑ ′

−→ t ′; ρ ′

with ϑ ∈ I[P ], then Ψ
′;∆; Γ; P ⊢ t ′ : T and Ψ

′;∆; Γ ⊢ ρ ′ for some Ψ′ ⊇ Ψ.

Proof. By induction on the typing derivation using the aggregation lemma in the case T-AsLocal,
the Var allocation property in the case T-SourceVar, the signal allocation property in the case
T-Signal, the retrieval property in the case T-Now and the update property in the case T-Set. □
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Based on progress and preservation for terms t , we prove type soundness for whole programs s :

Theorem 3 (Progress on s-terms). Suppose s is a closed, well-typed term (that is, Ψ;� ⊢ s for some

Ψ). Then either s is a value or else, for any reactive system ρ such that Ψ;�;� ⊢ ρ, there is some term

s ′, some ϑ and some reactive system ρ ′ with s; ρ ϑ−↠ s ′; ρ ′.

Proof. By case analysis on the typing derivation using the progress theorem for t-terms. □

Theorem 4 (Preservation on s-terms). If Ψ;∆ ⊢ s and Ψ;∆;� ⊢ ρ and s; ρ ϑ−↠ s ′; ρ ′, then
Ψ
′;∆ ⊢ s ′ and Ψ

′;∆;� ⊢ ρ ′ for some Ψ′ ⊇ Ψ.

Proof. By case analysis on the typing derivation using the preservation theorem for t-terms. □

6.5 Placement Soundness

We prove placement soundness for the core calculus. We show that we can statically reason about
the peer on which code is executed, i.e., that the peer context P in which a term t is type-checked
matches the type P of the peer instances ϑ on which t is evaluated. The type system is sound for a
placement if the code placed on a peer P is executed on peer instances of peer type P :

Theorem 5 (Static Placement on t-terms). If Ψ;∆; Γ; P ⊢ t : T and ϑ : P ▷ t ; ρ ϑ ′

−→ t ′; ρ ′ with
ϑ ⊆ I[P ], then for every subterm ti with Ψi ;∆i ; Γi ; Pi ⊢ ti : Ti and ϑi : P

′
i ▷ ti ; ρi

ϑ ′′

−→ t ′i ; ρ
′
i holds

ϑi ⊆ I[P ′
i
] and Pi = P ′

i .

Proof. By case analysis on the typing derivation for terms t . □

Theorem 6 (Static Placement on s-terms). If Ψ;∆ ⊢ s and s; ρ ϑ−↠ s ′; ρ ′, then for every subterm

ti with Ψi ;∆i ; Γi ; Pi ⊢ ti : Ti and ϑi : P
′
i ▷ ti ; ρi

ϑ ′′

−→ t ′i ; ρ
′
i holds ϑi ⊆ I[P ′

i
] and Pi = P ′

i .

Proof. By case analysis on the typing derivation for terms s . □

Further, we prove that remote access is explicit, i.e., it is not possible to compose expressions
placed on different peers without explicitly using asLocal:

Theorem 7 (Explicit Remote Access). If Ψ;∆; Γ; P ⊢ t : T , then every subterm ti of t with

Ψi ;∆i ; Γi ; Pi ⊢ ti : Ti is either an explicitly accessed remote term (that is, tr in one of asLocal tr : S ,
asLocal tr : S from tf , asLocal blockx :T = tx in tr : S or asLocal blockx :T = tx in tr from tf : S) or
P = Pi .

Proof. By case analysis on the typing derivation of terms t . □

7 IMPLEMENTATION

The implementation of ScalaLoci primarily entails (1) the type-level encoding of placement types
and ties into Scala to type-check remote access and statically determine the type of a remote access
based on the ties between peers, and (2) the macro-driven code separation. Overall ScalaLoci
amounts to ∼ 7 K LOC in Scala plus ∼ 2 K LOC to integrate different network protocols and reactive
systems. An interesting challenge is the encoding of placement types into the Scala type systemwith
the goal of preserving compatibility with plain Scala, i.e., every ScalaLoci program is a syntactically
correct and well-typed Scala program. Thanks to our approach based on macro expansion, existing
libraries and tooling can be seamlessly used with ScalaLoci and we impose no restrictions on the
Scala code a developer can place on any peer.

Type Checking. In our approach, we first use the standard Scala type checker to enforce correct
placement and remote access. Placement types can even be inferred in cases where the standard
Scala type inference applies. We encode the ties between peers at the type level in Scala (i.e.,
type Tie=...). We (i) check that remote access using asLocal is permitted between peers and
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(ii) statically select an aggregation scheme for remote access based on the tie (Section 2.4.1) using
Scala’s type-level programming, which builds on implicit value resolution.
Further, we ensure statically that there is a serialization method for the type of every value

that is transmitted remotely. We use the Concept pattern, an encoding of type classes using Scala
implicits [Oliveira et al. 2010]: The compiler checks that a Serializable[T] type class instance is
available for every type T that needs to be serializable.

Code Separation into Tiers. After type checking, we use Scala annotation macros [Burmako
2013] (i.e., the enclosing class, trait or object is annotated with @multitier) to separate the type-
checked program into peer-specific parts and replace remote accesses with calls into the underlying
communication backend, auto-generating the communication boilerplate. The macro expansion
gets the untyped abstract syntax tree (AST) of the Scala code to be expanded as input. After invoking
the Scala type checker, we generate code for each peer by transforming the type-checked AST.
The only correctness property which cannot be checked by the Scala type system and which is
performed during macro expansion is checking that remote blocks do not capture values implicitly
(i.e., they need to be listed explicitly in the capture clause, cf. Section 2.5). For this property, we
perform static analysis on the AST. The macro aborts compilation and produces an appropriate
compiler error if implicit captures are found.
The macro expansion generates a new class for every peer, which contains the abstractions

which are placed on the respective peer given by their placement types, thereby effectively erasing
placement types from the generated code. ScalaLoci supports both the compilation to Java bytecode
and to JavaScript via Scala.js [Doeraene 2013].

Context Propagation and Compiler Plugin. To carry the current peer context, i.e., the peer to which
an expression belongs, placed and remote code blocks implicitly define a value in their scope, which
is used to lookup the peer context from the implicit scope. A placed expression can be written as a
function placed[P]{implicit! => e}, where the implicit argument ś ł!ž here ś is not directly used
by the programmer. The use of implicit arguments as a means to propagate context is a known
pattern adopted by many Scala frameworks, e.g., Play [2012], ScalaSTM [2014] or Slick [2014]. Scala
extensions to support a syntactically light solution have already been discussed on the scala-debate
mailing list [Li 2014] and are available in the Dotty compiler as implicit function types [Odersky
et al. 2017]. For ScalaLoci, we developed a compiler plugin to omit the implicit argument when
declaring the function, e.g., the developer can simply writeplaced[P]{e}. The plugin is not specific
to ScalaLoci and, for compatibility with plain Scala, it is not mandatory for using our system.

8 EVALUATION

The main hypothesis of ScalaLoci’s design is that its multitier reactive abstractions reduce the
complexity of implementing a distributed system at negligible cost. We validate this hypothesis
with open-source case studies and side-by-side comparisons of alternative designs of applications
belonging to different domains (e.g., big data processing, real-time streaming, games, collaborative
editing, instant messaging), covering both the compilation of Scala to Java bytecode and to JavaScript
via Scala.js. We conduct performance benchmarks applying ScalaLoci in a real-world setting and
microbenchmarks to isolate the performance impact of the provided abstractions.

8.1 Case Studies

To evaluate the applicability of ScalaLoci to existing real-word software, we ported several open
source applications. Our ports are not simplified versions. We reimplemented components of the
existing software in ScalaLoci to achieve a functionally equivalent system.
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class TaskManagerGateway {
def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,

mgr: ActorRef) = {
mgr ! Disconnect(instanceId, cause)

}

def stopCluster(applicationStatus: ApplicationStatus, message: String,
mgr: ActorRef) = {

mgr ! StopCluster(applicationStatus, message)

}

def requestStackTrace(mgr: ActorRef) = {
(mgr ? SendStackTrace).mapTo[StackTrace]

}

def submitTask(tdd: TaskDeploymentDescriptor, mgr: ActorRef) = {
(mgr ? SubmitTask(tdd)).mapTo[Acknowledge]

}

def stopTask(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {
(mgr ? StopTask(executionAttemptID)).mapTo[Acknowledge]

}

def cancelTask(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {
(mgr ? CancelTask(executionAttemptID).mapTo[Acknowledge]

}

def updatePartitions(executionAttemptID: ExecutionAttemptID,
partitionInfos: Iterable[PartitionInfo], mgr: ActorRef) = {

(mgr ? UpdateTaskMultiplePartitionInfos(executionAttemptID, partitionInfos))

.mapTo[Acknowledge]

}

def failPartition(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {
mgr ! FailIntermediateResultPartitions(executionAttemptID)

}

def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,
jobId: JobID, checkpointId: long, timestamp: long, mgr: ActorRef) = {

mgr ! NotifyCheckpointComplete(jobId, executionAttemptID, checkpointId,

timestamp)
}

def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,
checkpointId: long, timestamp: long, checkpointOptions: CheckpointOptions,
mgr: ActorRef) = {

mgr ! TriggerCheckpoint(jobId, executionAttemptID, checkpointId, timestamp,

checkpointOptions)
}

def requestTaskManagerLog(logTypeRequest: LogTypeRequest, mgr: ActorRef) = {
(mgr ? RequestTaskManagerLog(logTypeRequest)).mapTo[BlobKey]

}
}

class TaskManager extends Actor {
def receive = {
case SendStackTrace => sendStackTrace() foreach { message =>

sender ! decorateMessage(message)

}

case Disconnect(instanceIdToDisconnect, cause) =>

if (instanceIdToDisconnect.equals(instanceID)) {
handleJobManagerDisconnect("JobManager requested disconnect: " +
cause.getMessage())

triggerTaskManagerRegistration()
} else {
log.debug("Received disconnect message for wrong instance id " +
instanceIdToDisconnect)

}

case StopCluster(applicationStatus, message) =>

log.info(s"Stopping TaskManager with final application status " +
s"$applicationStatus and diagnostics: $message")

shutdown()

case RequestTaskManagerLog(requestType) =>

blobService match {
case Some(_) =>
handleRequestTaskManagerLog(requestType, currentJobManager.get) match {
case Left(message) => sender() ! message

case Right(message) => sender() ! message

}
case None =>
sender() ! akka.actor.Status.Failure(new IOException(

"BlobService not available. Cannot upload TaskManager logs."))
}

case UpdateTaskMultiplePartitionInfos(executionID, partitionInfos) =>

sender ! decorateMessage(updateTaskInputPartitions(executionID, partitionInfos))

case FailIntermediateResultPartitions(executionID) =>

log.info(s"Discarding the results produced by task execution $executionID")
try {
network.getResultPartitionManager.releasePartitionsProducedBy(executionID)

} catch {
case t: Throwable => killTaskManagerFatal(
"Fatal leak: Unable to release intermediate result partition data", t)

}

case SubmitTask(tdd) =>

sender ! decorateMessage(submitTask(tdd))

case StopTask(executionID) =>

val task = runningTasks.get(executionID)
if (task != null) {
try {
task.stopExecution()
sender ! decorateMessage(Acknowledge.get())

} catch {
case t: Throwable =>
sender ! decorateMessage(Status.Failure(t))

}
} else {
log.debug(s"Cannot find task to stop for execution $executionID)")
sender ! decorateMessage(Acknowledge.get())

}

case CancelTask(executionID) =>

val task = runningTasks.get(executionID)
if (task != null) {
task.cancelExecution()
sender ! decorateMessage(Acknowledge.get())

} else {
log.debug(s"Cannot find task to cancel for execution $executionID)")
sender ! decorateMessage(Acknowledge.get())

}

case TriggerCheckpoint(jobId, taskExecutionId, checkpointId, timestamp,

checkpointOptions) =>
log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +
s"for $taskExecutionId.")

val task = runningTasks.get(taskExecutionId)
if (task != null) {
task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)

} else {
log.debug(s"TaskManager received a checkpoint request " +
s"for unknown task $taskExecutionId.")

}

case NotifyCheckpointComplete(jobId, taskExecutionId, checkpointId, timestamp) =>

log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +
s"for $taskExecutionId.")

val task = runningTasks.get(taskExecutionId)
if (task != null) {
task.notifyCheckpointComplete(checkpointId)

} else {
log.debug(s"TaskManager received a checkpoint confirmation " +
s"for unknown task $taskExecutionId.")

}
}

}

(a) Original Flink.

@multitier object TaskManagerGateway {
trait JobManager extends Peer { type Tie <: Multiple[TaskManager] }
trait TaskManager extends Peer { type Tie <: Single[JobManager] }

def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(instanceId, cause){
if (instanceId.equals(instanceID)) {
handleJobManagerDisconnect(s"JobManager requested disconnect: " +
cause.getMessage())

triggerTaskManagerRegistration()
} else {
log.debug(s"Received disconnect message for wrong instance id " +
instanceId)

}
}

}

def stopCluster(applicationStatus: ApplicationStatus, message: String,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(applicationStatus, message){
log.info(s"Stopping TaskManager with final application status " +
s"$applicationStatus and diagnostics: $message")

shutdown()
}

}

def requestStackTrace(mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(tdd){ sendStackTrace() }.asLocal.map(_.left.get)

}

def submitTask(tdd: TaskDeploymentDescriptor,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(tdd){ submitTask(tdd) }.asLocal.map(_.left.get)

}

def stopTask(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(executionAttemptID){
val task = runningTasks.get(executionAttemptID)
if (task != null) {
try {
task.stopExecution()
Left(Acknowledge.get())

} catch {
case t: Throwable =>
Right(Status.Failure(t))

}
} else {
log.debug(s"Cannot find task to stop for execution $executionAttemptID)")
Left(Acknowledge.get())

}
}.asLocal.map(_.left.get)

}

def cancelTask(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(executionAttemptID){
val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.cancelExecution()
Acknowledge.get()

} else {
log.debug(s"Cannot find task to cancel for execution $executionAttemptID")
Acknowledge.get()

}
}.asLocal

}

def updatePartitions(
executionAttemptID: ExecutionAttemptID,
partitionInfos: java.lang.Iterable[PartitionInfo],
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(executionAttemptID, partitionInfos){
updateTaskInputPartitions(executionAttemptID, partitionInfos)

}.asLocal.map(_.left.get)

}

def failPartition(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(executionAttemptID){
log.info(s"Discarding the results produced by task execution $executionID")
try {
network.getResultPartitionManager.releasePartitionsProducedBy(executionID)

} catch {
case t: Throwable => killTaskManagerFatal(
"Fatal leak: Unable to release intermediate result partition data", t)

}
}

}

def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,
jobId: JobID, checkpointId: Long, timestamp: Long,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(executionAttemptID, jobId, checkpointId, timestamp){
log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +
s"for $executionAttemptID.")

val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.notifyCheckpointComplete(checkpointId)

} else {
log.debug(s"TaskManager received a checkpoint confirmation " +
s"for unknown task $taskExecutionId.")

}
}

}

def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,
checkpointId: Long, timestamp: Long, checkpointOptions: CheckpointOptions,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(executionAttemptID, jobId, checkpointId, timestamp,
checkpointOptions){

log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +
s"for $executionAttemptID.")

val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)

} else {
log.debug(s"TaskManager received a checkpoint request " +
s"for unknown task $executionAttemptID.")

}
}

}

def requestTaskManagerLog(logTypeRequest: LogTypeRequest,
mgr: Remote[TaskManager]) = placed[JobManagerPeer] {

remote.on(mgr).capture(logTypeRequest){
blobService match {
case Some(_) =>
handleRequestTaskManagerLog(logTypeRequest, currentJobManager.get)

case None =>
Right(akka.actor.Status.Failure(new IOException(
"BlobService not available. Cannot upload TaskManager logs.")))

}
}.asLocal.map(_.left.get)

}

}

(b) ScalaLoci.

Fig. 5. Communication for two actors in Flink.

Apache Flink. We reimplemented the task

distribution system of the Apache Flink stream
processing framework [Carbone et al. 2015]
in ScalaLoci, which provides Flink’s core task
scheduling and deployment logic. The task dis-
tribution system is based on Akka actors and
consists of 23 remote procedures in six gate-

ways (an API that encapsulates sending actor
messages into asynchronous RPCs) amounting
to ∼ 500 highly complex Scala LOC. 19 out of
the 23 RPCs are processed in a different com-
pilation unit within another package, imped-
ing to correlate sent messages with the remote
computations they trigger. The ScalaLoci ver-
sion replaces the sending and receiving oper-
ations between actors ś used in the gateway
implementation to implement RPCs ś with re-
mote blocks as high-level communication ab-
straction. Cross-peer control and data flow is
explicit, thus much easier to track.
Figure 5 provides an overview of the com-

munication between the JobManager and a
TaskManager. Figure 5a shows the code of the
TaskManagerGateway (red box on the left) used by the JobManager actor and its communication
(arrows) with the TaskManager actor (blue box on the right). Figure 5b shows the ScalaLoci

implementation of the JobManager peer (red) and the TaskManager peer (blue). Flink’s actor-based
approach intertwines data flow between components with send and receive operations. Overall,
the data flow is hard to track (Figure 5a). Yet, data flow between both components is quite regular,
with the JobManager triggering remote computations on the TaskManager and the TaskManager
returning a result. This regularity is directly captured using ScalaLoci’s remote blocks (Figure 5b).

Flink communication is unsafe, with actor messages having type Any requiring downcasting or
non-exhaustive pattern matching. Crucially, the compiler cannot enforce that a message is even
handled to produce a remote result. In the ScalaLoci version, we were able to eliminate 23 unsafe
pattern matches and 8 type casts.

Apache Gearpump. Apache Gearpump [Zhong et al. 2014] is a real-time streaming engine. In
Gearpump, Master actors allocate processing tasks to Worker actors and collect results. A Master-

Proxy actor assigns Workers to Masters. We ported the assignment logic (∼ 100 LOC) to ScalaLoci,
replacing actor communication with multitier reactive abstractions. The MasterProxy message
loop mixes largely unrelated tasks, e.g., assigning Workers to a Master and monitoring the Master
for termination, which are captured by separated multitier streams in the ScalaLoci version. We
also removed imperative state changes on the Master ś managing the list of currently connected
Workers ś and on the Worker ś keeping track of the currently connected Master. In ScalaLoci, the
list of connected remote instances is automatically handled by the runtime. Finally, the constraint
that a Master can connect to multiple Workers and a Worker can connect to at most one Master is
enforced at compile time in the ScalaLoci version with in-language architecture definitions.

Play Scala.js Application. We ported the Play Framework with Scala.js Showcase [Puripunpinyo
2014], an open source demonstrator of Scala.js combined with the Play Framework [2007], to

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 129. Publication date: November 2018.



129:22 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi

Table 1. Code metrics.
LOC Lines of Code CB Callbacks ISU Imperative State Updates
CRC Cross-host Composition RA Remote Access/Reads/Writes

Case Study LOC CB ISU CRC RA
Communication / Computation

Pong
(local) / observer 355 17 10 0 0
(local) / reactive 327 8 0 0 0
RMI / observer 460 24 14 0 5
RMI / reactive 431 13 6 0 5
Akka / observer 440 24 13 0 5
Akka / reactive 413 18 5 0 5
ScalaLoci / observer 426 22 13 0 7
ScalaLoci / reactive 369 8 0 4 4

Shapes
WebSocket / observer (JS) a 483 11 10 0 9
WebSocket / observer b 474 11 10 0 7
WebSocket / reactive b 462 9 5 0 3
Akka / observer b 478 13 9 0 7
Akka / reactive b 424 11 4 0 3
ScalaLoci / observer b 350 9 7 2 9
ScalaLoci / reactive b 345 2 0 6 6

P2P Chat
WebRTC / observer (JS) a 776 22 25 0 7
WebRTC / observer b 824 24 25 0 7
WebRTC / reactive b 820 14 10 0 7
Akka / observer b 772 25 24 0 7
Akka / reactive b 771 15 9 0 7
ScalaLoci / observer b 637 21 19 4 8
ScalaLoci / reactive b 593 4 4 7 7

a Uses handwritten JavaScript for the client-side, Scala for the
server side.

b All code is in Scala or ScalaLoci. The client is compiled to
JavaScript via Scala.js.

ScalaLoci. It implements several components
amounting to ∼ 1 500 LOC including instant
messaging and a reactive Todo list [Li 2013]
based on TodoMVC [2011]. The ScalaLoci

version is feature-equivalent to the original
one, except for the Todo list where the up-
dates made by a client are automatically prop-
agated to all other clients using ScalaLoci’s
multitier reactives. In contrast, the original
version requires to reload the page to propa-
gate changes. We were able to reuse 70 % LOC
just by combining highly coupled code for han-
dling clientśserver interaction into a multi-
tier object and adding placement annotations.
Send and receive operations for transferring
values are implemented inside different mod-
ules in the original baseline. Communication
on the server side is handled by a controller,
which defines actions, i.e., a callback mecha-
nism to handle HTTP client requests and cre-
ate a response or setup communication chan-
nels over WebSocket. Clients send requests us-
ing Ajax and handle responses using callbacks.
With ScalaLoci, all communication code is
automatically generated. The communication
boilerplate (e.g., sending messages with the
WebSocket API, callbacks, or Play’s message serialization to JSON) is reduced by 63%. The only
boilerplate code left is needed for integration with the Play framework.

8.2 Variants Analysis

To evaluate the design of the applications that use ScalaLoci, we compare different variants of the
same software. We reimplemented every variant from scratch to provide a fair comparison when
exchanging different aspects of the implementation, i.e., the communication mechanism and the
event processing strategy. For each of the 22 variants (each line in Table 1) we report both aspects.
For example, Akka / observer (Line 5) adopts Akka actors for the communication but no RP for
local event propagation. The local variant is a non-distributed, purely local baseline. The ScalaLoci
variants use multitier abstractions. All other variants use manually written communication code
between distributed components, i.e., Akka actors, Java Remote Method Invocation (RMI) for JVM
applications or native web browser APIs (WebSocket or WebRTC) for JS applications. The variants
marked with JS use handcrafted JavaScript for the browser side. The other variants are compiled
from Scala.
Pong implements the arcade Pong game. We extended a local implementation (the user plays

against the computer) to a distributed multiplayer implementation. The latter adopts a clientśserver
model. Both the server and the clients run on the JVM. Shapes is a collaborative drawing web
application, where clients connect to a central server. P2P Chat is the P2P web chat application
introduced in the initial running example, which supports multiple one-to-one chat sessions. Peers
communicate directly in a P2P fashion after discovery via a registry. In the latter two cases, the
server and the registry run on the JVM while clients and peers run in the web browser.
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val ballSize = 20
val maxX = 800
val maxY = 400
val leftPos = 30
val rightPos = 770
val initPosition = Point(400, 200)
val initSpeed = Point(10, 8)

val ball: Signal[Point] = tick.fold(initPosition) {
(ball, _) => ball + speed.get }

val areas = {
val racketY = Seq(
Signal { UI.mousePosition().y },
Signal { ball().y })

val leftRacket = Racket(leftRacketPos, racketY(0))
val rightRacket = Racket(rightRacketPos, racketY(1))
val rackets = List(leftRacket, rightRacket)
Signal { rackets map { _.area() } } }

val leftWall = ball.changed && { _.x < 0 }
val rightWall = ball.changed && { _.x > maxX }

val xBounce = {
val ballInRacket = Signal { areas() exists { _ contains ball() } }
val collisionRacket = ballInRacket changedTo true
leftWall || rightWall || collisionRacket }

val yBounce = ball.changed &&
{ ball => ball.y < 0 || ball.y > maxY }

val speed = {
val x = xBounce toggle (initSpeed.x, -initSpeed.x)
val y = yBounce toggle (initSpeed.y, -initSpeed.y)
Signal { Point(x(), y()) } }

val score = {
val leftPoints = rightWall.iterate(0) { _ + 1 }
val rightPoints = leftWall.iterate(0) { _ + 1 }
Signal { leftPoints() + " : " + rightPoints() } }

val ui = new UI(areas, ball, score)

(a) Local.

trait Server extends ServerPeer[Client]
trait Client extends ClientPeer[Server]

val ballSize = 20
val maxX = 800
val maxY = 400
val leftPos = 30
val rightPos = 770
val initPosition = Point(400, 200)
val initSpeed = Point(10, 8)

val clientMouseY = placed[Client] {
Signal { UI.mousePosition().y } }

val isPlaying = placed[Server].local {
Signal { remote[Client].connected().size > 2 } }

val ball: Signal[Point] on Server = placed {
tick.fold(initPosition) { (ball, _) =>
if (isPlaying.get) ball + speed.get else pos } }

val players = placed[Server].local { Signal {
remote[Client].connected() match {
case left :: right :: _ => Seq(Some(left), Some(right))
case _ => Seq(None, None) } } }

val areas = placed[Server] {
val racketY = Signal { players() map { _ map {
client => (clientMouseY from client).asLocal() } getOrElse
initPosition.y } }

val leftRacket = Racket(leftPos, Signal { racketY()(0) })
val rightRacket = Racket(rightPos, Signal { racketY()(1) })
val rackets = List(leftRacket, rightRacket)
Signal { rackets map { _.area() } } }

val leftWall = placed[Server].local { ball.changed && { _.x < 0 } }
val rightWall = placed[Server].local { ball.changed && { _.x > maxX } }

val xBounce = placed[Server].local {
val ballInRacket = Signal { areas() exists { _ contains ball() } }
val collisionRacket = ballInRacket changedTo true
leftWall || rightWall || collisionRacket }

val yBounce = placed[Server].local { ball.changed &&
{ ball => ball.y < 0 || ball.y > maxY } }

val speed = placed[Server].local {
val x = xBounce toggle (initSpeed.x, - initSpeed.x)
val y = yBounce toggle (initSpeed.y, - initSpeed.y)
Signal { Point(x(), y()) } }

val score = placed[Server] {
val leftPoints = rightWall.iterate(0) { _ + 1 }
val rightPoints = leftWall.iterate(0) { _ + 1 }
Signal { leftPoints() + " : " + rightPoints() } }

val ui = placed[Client] {
new UI(areas.asLocal, ball.asLocal, score.asLocal) }

(b) ScalaLoci.

val ballSize = 20
val maxX = 800
val maxY = 400
val leftPos = 30
val rightPos = 770
val initPosition = Point(400, 200)
val initSpeed = Point(10, 8)

class Server extends Actor {
def receive = addPlayer orElse mouseYChanged

val clients = Var(Seq.empty[ActorRef])

val mousePositions = Var(Map.empty[ActorRef, Int])

def mouseYChanged: Receive = { case MouseYChanged(y) =>
mousePositions transform { _ + (sender -> y) } }

val isPlaying = Signal { clients().size >= 2 }

val ball: Signal[Point] =
tick.fold(initPosition) { (ball, _) =>
if (isPlaying.get) ball + speed.get else ball }

def addPlayer: Receive = { case AddPlayer =>
clients transform { _ :+ sender } }

val players = Signal {
clients() match {
case left :: right :: _ => Seq(Some(left), Some(right))
case _ => Seq(None, None) } }

val areas = {
val racketY = Signal {
players() map {
_ flatMap { mousePositions() get _ } getOrElse initPosition.y } }

val leftRacket = new Racket(leftRacketPos, Signal { racketY()(0) })
val rightRacket = new Racket(rightRacketPos, Signal { racketY()(1) })
val rackets = List(leftRacket, rightRacket)
Signal { rackets map { _.area() } } }

val leftWall = ball.changed && { _.x < 0 }
val rightWall = ball.changed && { _.x > maxX }

val xBounce = {
val ballInRacket = Signal { areas() exists { _ contains ball() } }
val collisionRacket = ballInRacket changedTo true
leftWall || rightWall || collisionRacket }

val yBounce = ball.changed &&
{ ball => ball.y < 0 || ball.y > maxY }

val speed = {
val x = xBounce toggle (Signal { initSpeed.x }, Signal { -initSpeed.x })
val y = yBounce toggle (Signal { initSpeed.y }, Signal { -initSpeed.y })
Signal { Point(x(), y()) } }

val score = {
val leftPlayerPoints = rightWall.iterate(0) { _ + 1 }
val rightPlayerPoints = leftWall.iterate(0) { _ + 1 }
Signal { leftPlayerPoints() + " : " + rightPlayerPoints() } }

areas observe { areas => clients.now foreach { _ ! UpdateAreas(areas) } }
ball observe { ball => clients.now foreach { _ ! UpdateBall(ball) } }
score observe { score => clients.now foreach { _ ! UpdateScore(score) } }

clients observe { _ foreach { client =>
client ! UpdateAreas(areas.now)
client ! UpdateBall(ball.now)
client ! UpdateScore(score.now) } }

}

abstract class Client(server: ActorSelection) extends Actor {
val areas = Var(List.empty[Area])
val ball = Var(Point(0, 0))
val score = Var("0 : 0")

mousePosition observe { pos =>
server ! MouseYChanged(pos.y) }

val ui = new UI(areas, ball, score)

def receive = {
case UpdateAreas(areas) => this.areas set areas
case UpdateBall(ball) => this.ball set ball
case UpdateScore(score) => this.score set score }

server ! AddPlayer
}

(c) Akka.

val ballSize = 20
val maxX = 800
val maxY = 400
val leftPos = 30
val rightPos = 770
val initPosition = Point(400, 200)
val initSpeed = Point(10, 8)

@remote trait Server {
def addPlayer(client: Client): Unit
def mouseYChanged(client: Client, y: Int): Unit }

class ServerImpl extends Server {
val clients = Var(Seq.empty[Client])

val mousePositions = Var(Map.empty[Client, Int])

def mouseYChanged(client: Client, y: Int) = synchronized {
mousePositions() = mousePositions.get + (client -> y) }

val isPlaying = Signal { clients().size >= 2 }

val ball: Signal[Point] =
tick.fold(initPosition) { (ball, _) =>
if (isPlaying.get) ball + speed.get else ball }

def addPlayer(client: Client) = synchronized {
clients transform { _ :+ client } }

val players = Signal {
clients() match {
case left :: right :: _ => Seq(Some(left), Some(right))
case _ => Seq(None, None) } }

val areas = {
val racketY = Signal {
players() map {
_ flatMap { mousePositions() get _ } getOrElse initPosition.y } }

val leftRacket = new Racket(leftRacketPos, Signal { racketY()(0) })
val rightRacket = new Racket(rightRacketPos, Signal { racketY()(1) })
val rackets = List(leftRacket, rightRacket)
Signal { rackets map { _.area() } } }

val leftWall = ball.changed && { _.x < 0 }
val rightWall = ball.changed && { _.x > maxX }

val xBounce = {
val ballInRacket = Signal { areas() exists { _ contains ball() } }
val collisionRacket = ballInRacket changedTo true
leftWall || rightWall || collisionRacket }

val yBounce = ball.changed &&
{ ball => ball.y < 0 || ball.y > maxY }

val speed = {
val x = xBounce toggle (initSpeed.x, -initSpeed.x)
val y = yBounce toggle (initSpeed.y, -initSpeed.y)
Signal { Point(x(), y()) } }

val score = {
val leftPoints = rightWall.iterate(0) { _ + 1 }
val righrPoints = leftWall.iterate(0) { _ + 1 }
Signal { leftPoints() + " : " + righrPoints() } }

areas observe { updateAreasClients(clients.get, _) }
ball observe { updateBallClients(clients.get, _) }
score observe { updateScoreClients(clients.get, _) }

clients observe { clients =>
updateAreasClients(clients, areas.get)
updateBallClients(clients, ball.get)
updateScoreClients(clients, score.get) }

def updateAreasClients(clients: Seq[Client], areas: List[Area]) =
clients foreach { _ updateAreas areas }

def updateBallClients(clients: Seq[Client], ball: Point) =
clients foreach { _ updateBall ball }

def updateScoreClients(clients: Seq[Client], score: String) =
clients foreach { _ updateScore score }

}

@remote trait Client {
def updateAreas(areas: List[Area]): Unit
def updateBall(ball: Point): Unit
def updateScore(score: String): Unit }

class ClientImpl(server: Server) extends Client {
val self = makeStub[Client](this)

val areas = Var(List.empty[Area])
val ball = Var(Point(0, 0))
val score = Var("0 : 0")

UI.mousePosition observe { pos =>
server mouseYChanged (self, pos.y) }

val ui = new UI(areas, ball, score)

def updateAreas(areas: List[Area]) = synchronized { this.areas() = areas }
def updateBall(ball: Point) = synchronized { this.ball() = ball }
def updateScore(score: String) = synchronized { this.score() = score }

server addPlayer self
}

(d) RMI.

Fig. 6. Pong variants.

Programming Experience. To
give an intuition of the ex-
perience of using ScalaLoci,
Figure 6 shows a side-by-side
comparison of the four differ-
ent reactive Pong variants. We
exclude the GUI from the code
excerpts and from the follow-
ing discussion as it is the same
for all variants. We highlight
the additional code needed for
the distributed versions in Fig-
ure 6b, 6c and 6d compared to
the local baseline in Figure 6a.
We use yellow for code added
to enable themultiplayer game.
Orange indicates code added
for distribution.

Transforming the local vari-
ant of Pong into a distributed
application is straightforward. In the ScalaLoci variant (Figure 6b), 8 LOC, which implement
multiplayer, are the majority of the additions. As much as 91% LOC (excluding the GUI) could
be reused from the local version just by adding placement to assign values to either the client or
the server. The reused code amounts to 72 % LOC of the ScalaLoci version. In the Akka and RMI
versions (Figure 6c and 6d), we could also reuse 91 % LOC of the local baseline, which is 53 % LOC
of the Akka version and 46 % LOC for RMI. The explanation is that the Akka and RMI versions lack
multitier reactives, thus data flows cannot be directly defined across client and server boundaries.
Instead, message-passing and callbacks or imperative remote calls are needed to explicitly prop-
agate changes across hosts ś which constitutes ∼ 60% of the added code (orange) ś tangling the
application logic with connection management and data propagation.

Design ś Code Metrics and Safety. Table 1 compares code metrics for all variants (rows). Not
surprisingly, ScalaLoci requires less code. Multitier reactives further reduce the code size and
the amount of callbacks (Callbacks column). We use the number of callbacks as a measure of
design quality, since replacing callbacks ś which are not composable ś by composable reactives
removes manual imperative state updates (Imperative State Updates column) and improves exten-
sibility [Meyerovich et al. 2009]. Reactives exhibit better composability properties compared to
callbacks due to the inversion of control problem [Maier et al. 2010]. To completely eliminate
callbacks, in RP, libraries need to support reactive abstractions, e.g., a text input widget in a graphic
library should expose a signal holding the current text. Since most libraries adopt callbacks at their
boundaries, some callbacks are still necessary even if the application logic is based on RP.
In ScalaLoci, data flows on different hosts can be seamlessly composed (Cross-host Com-

position column), which is not possible in approaches where data flow across hosts is inter-
rupted, e.g., by RPC or message sending. The applications introduced in Section 3 compose data
flows across hosts. For instance, the token ring example (Listing 5, Line 17) composes the local
events recv and sendToken and the remote event sent seamlessly inside the single expression
(sent.asLocal\recv)||sendToken.
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Statically typed access to remote values in ScalaLoci ensures that they are serializable, opposed
to Java RMI serialization, which can fail at run time. Such remote accesses (Remote Access column)
involve potentially problematic serialization in non-ScalaLoci cases. For example, the variants
using manually written communication code explicitly invoke methods to convert between in-
memory and serialized representation, e.g., JSON.stringify(v) and JSON.parse(v) in JavaScript
code or write(v) and read[T](v) in Scala code. Also, remote access is achieved with explicit
sending and receiving operations. Since the compiler cannot enforce that the types on both sides
match, it cannot prevent that values are manipulated inconsistently, resulting in run time errors. In
ScalaLoci, instead, a shared value is accessed locally as v and remotely as v.asLocal. Hence the
compiler can statically check that v’s type is consistent for local and remote accesses.
These results suggest that there exist quantifiable differences in design regarding the number

of used imperative callbacks compared to reactive abstractions and regarding abstractions for
composing local and remote values, which we interpret as ScalaLoci enabling improvement in
software design, fostering more concise and composable code, and reducing the number of callbacks
and imperative state updates. Also, applications in ScalaLoci are safer than their counterparts, e.g.,
due to reduced risk of run time type mismatches thanks to static type-checking across peers.

8.3 Performance

We evaluate ScalaLoci performance in two ways. First, we consider the impact of ScalaLoci on a
real-world system running in the cloud compared to the original implementation with Akka actors.
Second, we compare remote change propagation cost in ScalaLoci among common alternatives.
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Fig. 7. System Benchmarks.

System Benchmarks. We measure the per-
formance of Apache Flink compared to the
ScalaLoci reimplementation presented in
Section 8.1. Both systems are functionally
equivalent and only differ for the language
abstractions covered by ScalaLoci (i.e., ar-
chitecture definition, placement and remote
communication). We use the Yahoo Stream-
ing Benchmark [Chintapalli et al. 2016] on
the Amazon EC2 Cloud (2,3 GHz Intel Xeon
E5-2686, 8 GiB instances) with 8 servers for
data generation, one server as sink, one
Apache Zookeeper server for orchestration,
one JobManager master server, and 4 to 8 TaskManager worker nodes. Events are marked with
timestamps at generation time. The query groups events into 10 s windows. Each data source
generates 20 K events/s. The Yahoo Streaming Benchmark measures latency. Figure 7a shows
latency average and variance between the two versions. Figure 7b shows the empirical cumulative
distribution: The latency for completing the processing of a given fraction of events. We consider
the difference between the two versions negligible (in some cases, ScalaLoci is even faster) and
only due to variability in system measurements. In conclusion, at the system level, there is no
observable performance penalty when using ScalaLoci.

Microbenchmarks. Our microbenchmarks are based on the Pong and P2P Chat applications from
Section 8.2. Pong runs on the Java Virtual Machine (JVM) and P2P Chat runs on a JavaScript engine
in a web browser. In both settings, we microbenchmark the performance impact of ScalaLoci’s
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Fig. 8. Microbenchmarks.

abstractions. We do not microbenchmark
different virtual machines (i.e., running the
same application on a JavaScript and a Java
virtual machine) because the differences
would be due to the execution environment
rather than to our implementation. To specif-
ically only measure ScalaLoci’s overhead,
all peers run on the same machine. Remote
communication is piped through the net-
work stack locally and its latency is negli-
gible. The setup is an Intel Core i7-5600U,
2.6ś3.2 GHz, 8 GiB. The benchmarks initiate
a value change which propagates to a remote
peer where it triggers a computation. The re-
sult is propagated back to the initiating peer. We measure the average time over 1 K round trips.
Figure 8 shows the mean over 200 iterations and 99 % confidence intervals.
For Pong, ScalaLoci even outperforms the RMI variants (Figure 8a). We attribute this result to

RMI’s blocking remote call approach causing the application to block upon sending a changed value
before propagating the next change. The performance of the ScalaLoci variants is comparable to
the Akka variants. Using our reactive runtime system incurs a small overhead of ∼ 0.02ś0.05ms as
compared to handcrafted value propagation for both the RMI and ScalaLoci variants.
For the P2P Chat benchmark (Figure 8b), the observer variant with handwritten JavaScript for

the client is the fastest. Akka, ScalaLoci, and the compilation to JavaScript show an overhead
partially due to the Scala.js translation. Akka.js on the client-side has a comparable performance
to plain Scala.js. This is mostly because remote messages in Akka.js are sent using the same
WebRTC browser API as in the WebRTC cases, resulting in the same amount of overhead. The
overhead amounts to ∼ 0.1ms for using Scala.js (bar labeled WebRTC / observer (JS) compared
toWebRTC / observer in the graph), ∼ 0.15ms for ScalaLoci compiled to JavaScript (bars labeled
ScalaLoci compared toWebRTC in the graph) and ∼ 0.15ś0.35ms for the reactive runtime compiled
to JavaScript (bars labeled reactive compared to observer in the graph) as reactive framework. All
measurements are under 1ms ś distinctly lower than network latency for Internet applications,
which is in line with the results of the system benchmarks where the overhead of ScalaLoci is
negligible for distributed applications.

9 RELATED WORK

First, we discuss research that influenced our work in terms of techniques. Then we consider related
work on multitier languages, FRP languages and languages that combine both.

Unifying architectural definition and implementation in one language has been pioneered by
ArchJava [Aldrich et al. 2002]. ScalaLoci peers and ties are similar to ArchJava components and
connections. Subsequent work [Aldrich et al. 2003] allows setting up ArchJava connections over
a network and hooking into the type-checking process to give additional type safety guarantees
(e.g., that values implement the Java Serializable interface). ArchJava, however, does not address
the composition of values with different placement in the same compilation unit using placement
types nor supports abstractions for data flows spanning over multiple distributed components.
Partitioned Global Address Space Languages (PGAS) such as X10 [De Wael et al. 2015] provide a
programming model for high-performance parallel execution. PGAS languages define a globally
shared address space aiming at a goal similar to multitier languages ś reduce boundaries among
hosts. The scope of HPC, however, is very diverse ś we focus on generic distributed systems based
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on reactive communication abstractions. Chandra et al. [2008] extend X10 with dependent placed
types, one for each processing location. In contrast, ScalaLoci abstracts over peer instances of the
same type, e.g., to refer uniformly to all peers in a P2P architecture. The actor model, introduced
by Hewitt et al. [1973], encapsulates state into concurrent units that exchange asynchronous
messages. The resulting decoupling enables scalability and fault tolerance. ScalaLoci adheres to
such properties and provides developers with higher level abstractions, i.e., multitier reactives,
for both communication and fault tolerance. Akka [2009a] and Akka Typed [2015] actors do not
provide high-level communication abstractions like reactives nor support multitier programming.
For this reason, in Akka and Akka Typed, programmers need to reason in terms of message-passing
not in terms of distributed (placed) reactives. Vats in the E programming language [Miller et al.
2005] are similar to ScalaLoci’s peers, exchanging messages asynchronously between objects
in (distributed) vats or placed values on peers, respectively. In contrast to ScalaLoci, E does not
provide architecture specification or a reactive communication mechanism.

Multitier Languages. Multitier languages emerge in the web context to remove the separation
between client and server code, either by compiling the client side to JavaScript or by adopting
JavaScript for the server, too. Hop [Serrano et al. 2006] and Hop.js [Serrano and Prunet 2016] are
dynamically typed languages that follow a traditional clientśserver communication scheme with
asynchronous callbacks. They do not provide reactives for distributed data flow nor ensure static
guarantees for the behavior of the distributed system. Remote blocks are similar to Hop’s anonymous
services and prevent accidental capture, similar to spores [Miller et al. 2014]. In Links [Cooper et al.
2007] and Opa [Rajchenbach-Teller and Sinot 2010], functions are annotated to specify either client-
or server-side execution. In Opa, the server can push messages to clients over channels, which are
similar to event streams but cannot be composed like RP abstractions. Links’ server is stateless for
scalability reasons ś limiting the spectrum of the supported architectures. In StiP.js [Philips et al.
2014], annotations assign code fragments to the client or the server. Slicing detects the dependencies
between each fragment and the rest of the program. In contrast, in ScalaLoci, developers specify
placement in types, enabling architectural reasoning. All approaches above focus on the web,
contrarily to our goal of supporting other architectures. An exception is ML5 [Murphy et al. 2008],
a multitier language for generic software architectures: Possible worlds, as known from modal logic,
address the purpose of placing computations and, similar to ScalaLoci, are part of the type. ML5,
however, does not provide RP abstractions.

(Functional) Reactive Programming. FRP was originally proposed by Elliott and Hudak [1997] to
declaratively program visual animations. Formally modeling continuous time led to a denotational
semantics where time-changing variables are functions from time to values [Nilsson et al. 2002].
FRP has since been applied to a number of fields including robotics [Hudak et al. 2003], network
switches [Foster et al. 2011] and wireless sensor networks [Newton et al. 2007]. User interfaces have
become a largely popular application field for RP. Flapjax [Meyerovich et al. 2009] pioneered using
RP in JavaScript web clients. Elm [Czaplicki and Chong 2013], a functional language akin to Haskell
that compiles to JavaScript, adopts a similar approach. Flapjax provides behaviors and event streams,
while Elm uses only signals to model both time-varying values and events. Microsoft Reactive
Extensions (Rx) [Meijer 2010] offer abstractions for event streams. Rx is available for both Java
(RxJava) and JavaScript (RxJS), but as separate implementations, i.e., reactive dependencies cannot
cross the boundaries among different hosts. Recently, Ramson and Hirschfeld [2017] proposed active
expressions as a primitive for change detection, upon which different kinds of RP can be built. Other
recent research directions in RP include debugging [Banken et al. 2018; Perez and Nilsson 2017; Sal-
vaneschi and Mezini 2016], thread-safe concurrency [Drechsler et al. 2018], and application to new
domains such as IoT and edge computing [Calus et al. 2017] and autonomous vehicles [Finkbeiner
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et al. 2017]. In the distributed setting, the DREAM reactive middleware [Margara and Salvaneschi
2014, 2018] allows selecting different levels of consistency guarantees for distributed RP. CRDTs
have been used to handle state replication for signals shared among hosts [Myter et al. 2016].
Mogk et al. [2018] extend the RP language REScala [Salvaneschi et al. 2014b] with distributed fault
handling based on state replication via CRDTs and state snapshotting. None of the works discussed
above support multitier programming.

A line of work similar to RP concerns streams, e.g., to support different propagation strategies via
object algebras [Biboudis et al. 2015], or to improve performance via staging [Kiselyov et al. 2017].
Akka Streams [2014] can send messages to actors and actors can queue messages into streams, but
remote communication occurs via message-passing among actors. Distributed Akka streams are
currently in experimental stage. Yet, there is no explicit notion of placement or of architecture
specification.

Multitier Functional Reactive Languages. Ur/Web [Chlipala 2015] supports FRP user interfaces on
the client. However, it does not directly support data flows over multiple hosts. Communication
from the server to the client is achieved by message-passing channels and from client to server
by RPC. Eliom [Radanne et al. 2016], the multitier language used in the Ocsigen [Balat 2006]
project, provides signals and events ś both can propagate values remotely. Contrarily to our
approach, however, it only supports clientśserver web applications. Hiphop [Berry et al. 2011]
extends Hop with a event system for clientśserver communication (only), which is based on the
synchronous data flow model introduced by synchronous data flow languages, e.g., Esterel [Berry
and Gonthier 1992] or Lustre [Halbwachs et al. 1991]. Hiphop’s approach focuses on providing
strong guarantees on memory and time bounds by restricting the expressivity of the language rather
than providing high-level abstractions for distribution. AmbientTalk/R [Carreton et al. 2010] targets
mobile applications with loosely coupled devices and no stable data flow. It provides reactives
on top of a publish-subscribe middleware. Contrarily to ScalaLoci, it does not support multitier
programming via placement types. Scala Multi-Tier FRP [Reynders et al. 2014] achieves multitier
reactivity via behaviors and events accessible across tiers. Similar to ScalaLoci, client-side and
server-side reactives belong to different types. Scala Multi-Tier FRP only supports clientśserver
web applications: Other architectures like P2P (used in our P2P Chat example) or more complex
ones with masters, workers, proxies etc. (e.g., the Flink and Gearpump case studies implemented in
our evaluation) are not supported.

10 CONCLUSION

We presented ScalaLoci, a multitier reactive language with statically typed specification of data
flows spanning over multiple hosts. ScalaLoci provides language abstractions to specify value
distribution to different hosts via explicit placement and seamlessly compose distributed reactives.
The evaluation on case studies and third party applications shows higher design quality at the cost
of negligible performance overhead. We are currently investigating means to modularly compose
multitier applications reconciling the tension between multitier programming (condensing code
from different peers into the same compilation unit) and the need for encapsulation and strong
interfaces (separating different concerns into different modules).
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